Description
'\n\n
RELATED APPLICATIONSThis application is a Continuation of U.S. patent application Ser. No. 13/070,448 (now pending), filed Mar. 23, 2011, which is a Divisional of U.S. patent application Ser. No. 12/013,047 (now U.S. Pat. No. 7,988,979), filed Jan. 11, 2008, which is continuation of U.S. patent application Ser. No. 09/674,546 (now U.S. Pat. No. 7,576,176), filed Nov. 4, 2002, which is the National Stage of International Application No. PCT/US99/09346, filed Apr. 30, 1999, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Nos. 60/121,528, filed Feb. 25, 1999, 60/103,796, filed Oct. 9, 1998, 60/103,794, filed Oct. 9, 1998, 60/103,749, filed Oct. 9, 1998, 60/099,062, filed Sep. 2, 1998, 60/098,994, filed Sep. 2, 1998, 60/094,869, filed Jul. 31, 1998, and 60/083,758, filed May 1, 1998. Each of the foregoing patent applications is incorporated by reference in their entirety.
\n\n\n
SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILEThe content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 303822000402SeqList.txt, date recorded: Aug. 26, 2015, size: 6317 KB).
FIELD OF THE INVENTIONThis invention relates to antigens from the bacterial species: Neisseria meningitidis and Neisseria gonorrhoeae.
BACKGROUNDNeisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonizes the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N. gonorrhoea, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.
N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks. (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275 (19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337 (14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae,
N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).
Based on the organism\'s capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol. 46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against H. influenzae, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger W D “New and Improved Vaccines Against Meningococcal Disease†. In: New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).
Meningococcus B (menB) remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).
Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman J T (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala\'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).
A certain amount of sequence data is available for meningococcal and gonoccocal genes and proteins (eg. EP-A-0467714, WO96/29412), but this is by no means complete. The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic Neisseriae including Neisseria meningitidis or Neisseria gonorrhoeae. Those sequences specific to N. meningitidis or N. gonorrhoeae that are more highly conserved are further preferred sequences.
It is thus an object of the invention is to provide Neisserial DNA sequences which encode proteins that are antigenic or immunogenic.
\n\n\n
BRIEF DESCRIPTION OF THE DRAWINGSFIG. lA through FIG. 1E illustrate the products of (FIG. 1B) protein expression and (FIG. 1A) purification, (FIG. 1C) FACs analysis, (FIG. 1D) bactericidal assay, and (FIG. 1E) western blot. The result of the ELISA assay of the predicted ORF 919 as cloned and expressed in E. coli was positive.
FIG. 2A through FIG. 2D illustrate the products of (FIG. 2A) protein expression and purification, (FIG. 2B) western blot, (FIG. 2C) FACs analysis, and (FIG. 2D) bactericidal assay. The result of the ELISA assay of the predicted ORF 279 as cloned and expressed in E. coli was positive.
FIG. 3A through FIG. 3D illustrate the products of (FIG. 3A) protein expression and purification, (FIG. 3B) western blot, (FIG. 3C) FACs analysis, and (FIG. 3D) bactericidal assay. The result of the ELISA assay of the predicted ORF 576-1 as cloned and expressed in E. coli was positive.
FIG. 4A through FIG. 4D illustrate the products of (FIG. 4A) protein expression and purification, (FIG. 4B) western blot, (FIG. 4C) FACs analysis, and (FIG. 4D) bactericidal assay. The result of the ELISA assay of the predicted ORF 519-1 as cloned and expressed in E. coli was positive.
FIG. 5A through FIG. 5D illustrate the products of (FIG. 5A) protein expression and purification, (FIG. 5B) western blot, (FIG. 5C) FACs analysis, and (FIG. 5D) bactericidal assay. The result of the ELISA assay of the predicted ORF 121-1 as cloned and expressed in E. coli was positive.
FIG. 6A through FIG. 6D illustrate the products of (FIG. 6A) protein expression and purification, (FIG. 6B) western blot, (FIG. 6C) FACs analysis, and (FIG. 6D) bactericidal assay. The result of the ELISA assay of the predicted ORF 128-1 as cloned and expressed in E. coli was positive.
FIG. 7A through FIG. 7D illustrate the products of (FIG. 7A) protein expression and purification, (FIG. 7B) western blot, (FIG. 7C) FACs analysis, and (FIG. 7D) bactericidal assay. The result of the ELISA assay of the predicted ORF 206 as cloned and expressed in E. coli was positive.
FIG. 8A through FIG. 8C illustrate the products of (FIG. 8A) protein expression and purification, (FIG. 8B) FACs analysis, and (FIG. 8C) bactericidal assay. The result of the ELISA assay of the predicted ORF 287 as cloned and expressed in E. coli was positive.
FIG. 9A through FIG. 9D illustrate the products of (FIG. 9A) protein expression and purification, (FIG. 9B) western blot, (FIG. 9C) FACs analysis, and (FIG. 9D) bactericidal assay. The result of the ELISA assay of the predicted ORF 406 as cloned and expressed in E. coli was positive.
FIG. 10 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 919 as cloned and expressed in E. coli.
FIG. 11 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 279 as cloned and expressed in E. coli.
FIG. 12 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 576-1 as cloned and expressed in E. coli.
FIG. 13 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 519-1 as cloned and expressed in E. coli.
FIG. 14 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 121-1 as cloned and expressed in E. coli.
FIG. 15 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 128-1 as cloned and expressed in E. coli.
FIG. 16 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 206 as cloned and expressed in E. coli.
FIG. 17 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 287 as cloned and expressed in E. coli.
FIG. 18 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 406 as cloned and expressed in E. coli.
FIG. 19A, FIG. 19B, and FIG. 19C show an alignment comparison of amino acid sequences for ORF 225 for several strains of Neisseria. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics. The sequences in the Figure have the following SEQ ID NOs: FA1090 SEQ ID 3115; Z2491 SEQ ID 3116; ZO01—225 SEQ ID 3117; ZO02—225 SEQ ID 3118; ZO03—225 SEQ ID 3119; ZO04—225 SEQ ID 3120; ZO05—225 SEQ ID 3121; ZO06—225 SEQ ID 3122; ZO07—225 SEQ ID 3123; ZO08—225 SEQ ID 3124; ZO09—225 SEQ ID 3125; ZO10—225 SEQ ID 3126; ZO11—225 SEQ ID 3127; ZO12—225 SEQ ID 3128; ZO13—225 SEQ ID 3129; ZO14—225 SEQ ID 3130; ZO15—225 <SEQ ID 3131; ZO16—225 SEQ ID 3132; ZO17—225 SEQ ID 3133; ZO18—225 SEQ ID 3134; ZO19—225 SEQ ID 3135; ZO20—225 SEQ ID 3136; ZO21—225 SEQ ID 3137; ZO22—225 SEQ ID 3138; ZO23—225 SEQ ID 3139; ZO24—225 SEQ ID 3140; ZO25—225 SEQ ID 3141; ZO26—225 SEQ ID 3142; ZO27—225 SEQ ID 3143; ZO28—225 SEQ ID 3144; ZO29—225 SEQ ID 3145; ZO32—225 SEQ ID 3146; ZO33—225 SEQ ID 3147; and ZO96—225 SEQ ID 3148.
FIG. 20A and FIG. 20B show an alignment comparison of amino acid sequences for ORF 235 for several strains of Neisseria. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics. The sequences in the Figure have the following SEQ ID NOs: FA1090 SEQ ID 3149; GNMZQ01 SEQ ID 3150; GNMZQ02 SEQ ID 3151; GNMZQ03 SEQ ID 31521; GNMZQ04 SEQ ID 3153; GNMZQ05 SEQ ID 3154; GNMZQ07 SEQ ID 3155; GNMZQ08 SEQ ID 3156; GNMZQ09 SEQ ID 3157; GNMZQ10 SEQ ID 3158; GNMZQ11 SEQ ID 3159; GNMZQ13 SEQ ID 3160; GNMZQ14 SEQ ID 3161; GNMZQ15 SEQ ID 3162; GNMZQ16 SEQ ID 3163; GNMZQ17 SEQ ID 3164; GNMZQ18 SEQ ID 3165; GNMZQ19 SEQ ID 3166; GNMZQ21 SEQ ID 3166; GNMZQ22 SEQ ID 3167; GNMZQ23 SEQ ID 3168; GNMZQ24 SEQ ID 3169; GNMZQ25 SEQ ID 3170; GNMZQ26 SEQ ID 3171; GNMZQ27 SEQ ID 3172; GNMZQ28 SEQ ID 3173; GNMZQ29 SEQ ID 3174; GNMZQ31 SEQ ID 3175; GNMZQ32 SEQ ID 3176; GNMZQ33 SEQ ID 3177; and Z2491 SEQ ID 3178.
FIG. 21A and FIG. 21B show an alignment comparison of amino acid sequences for ORF 287 for several strains of Neisseria. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics. The sequences in the Figure have the following SEQ ID NOs: 287—14 SEQ ID 3179; 287—2 SEQ ID 3180; 287—21. SEQ ID 3181; 287—9 SEQ ID 3182; FA1090 SEQ ID 3183; and Z2491 SEQ ID 3184.
FIG. 22A and FIG. 22B show an alignment comparison of amino acid sequences for ORF 519 for several strains of Neisseria. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics. The sequences in the Figure have the following SEQ ID NOs: FA1090—519 SEQ ID 3185; Z2491—519 SEQ ID 3186; ZV01—519 SEQ ID 3187; ZV02—519 SEQ ID 3188; ZV03—519 SEQ ID 3189; ZV04—519 SEQ ID 3190; ZV05—519 SEQ ID 3191; ZV06—519ASS SEQ ID 3192; ZV07—519 SEQ ID 3193; ZV11—519 SEQ ID 3194; ZV12—519 SEQ ID 3195; ZV18—519 SEQ ID 3196; ZV19—519 SEQ ID 3197; ZV20—519ASS SEQ ID 3198; ZV21—519ASS SEQ ID 3199; ZV22—519ASS SEQ ID 3200; ZV26—519 SEQ ID 3201; ZV27—519 SEQ ID 3202; ZV28—519 SEQ ID 3203; ZV29—519ASS SEQ ID 3204; ZV32—519 SEQ ID 3205; and ZV96—519 SEQ ID 3206.
FIG. 23A, FIG. 23B, FIG. 23C, and FIG. 23D show an alignment comparison of amino acid sequences for ORF 919 for several strains of Neisseria. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics. The sequences in the Figure have the following SEQ ID NOs: FA1090 SEQ ID 3207; Z2491 <SEQ ID 3208; ZM01 SEQ ID 3209; ZM02 SEQ ID 3210; ZM03 SEQ ID 3211; ZM04 SEQ ID 3212; ZM05 SEQ ID 3213; ZM06 SEQ ID 3214; ZM07 SEQ ID 3215; ZM08N SEQ ID 3216; ZM09 SEQ ID 3217; ZM10 SEQ ID 3218; ZM11ASBC SEQ ID 3219; ZM12 SEQ ID 3220; ZM13 SEQ ID 3221; ZM14 SEQ ID 3222; ZM15 SEQ ID 3223; ZM16 SEQ ID 3224; ZM17 SEQ ID 3225; ZM18 SEQ ID 3226; ZM19 SEQ ID 3227; ZM20 SEQ ID 3228; ZM21 SEQ ID 3229; ZM22 SEQ ID 3230; ZM23ASBC SEQ ID 3231; ZM24 SEQ ID 3232; ZM25 SEQ ID 3233; ZM26 SEQ ID 3234; ZM27BC SEQ ID 3235; ZM28 SEQ ID 3236; ZM29ASBC SEQ ID 3237; ZM31ASBC SEQ ID 3238; ZM32ASBC SEQ ID 3239; ZM33ASBC SEQ ID 3240; ZM96 SEQ ID 3241.
\n\n\n
THE INVENTIONThe invention provides proteins comprising the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples.
It also provides proteins comprising sequences homologous (i.e., those having sequence identity) to the N. meningitidis amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of homology (sequence identity) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in MPSRCH program (Oxford Molecular) using an affine gap search with parameters:gap penalty 12, gap extension penalty 1.
The invention further provides proteins comprising fragments of the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.
The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (i.e. substantially free from other N. meningitidis or N. gonorrhoeae host cell proteins)
According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.
According to a further aspect, the invention provides nucleic acid comprising the N. meningitidis nucleotide sequences and N. gonorrhoeae nucleotide sequences disclosed in the examples.
According to a further aspect, the invention comprises nucleic acids having sequence identity of greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) to the nucleic acid sequences herein. Sequence identity is determined as above-discussed.
According to a further aspect, the invention comprises nucleic acid that hybridizes to the sequences provided herein. Conditions for hybridization are set forth herein.
Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N. meningitidis sequences or N. gonorrhoeae sequences and depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).
According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.
It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).
Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, in part or in whole, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
In addition, the term “nucleic acid†includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also protein nucleic acids (PNA) etc.
According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.
According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents or as immunogenic compositions.
The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of (I) a medicament for treating or preventing infection due to Neisserial bacteria (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria or (iii) for raising antibodies. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae) but are preferably N. meningitidis, especially strain B or strain C.
The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.
According to further aspects, the invention provides various processes.
A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.
A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.
A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.
A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilize the disclosed sequences for vaccination or diagnostic purposes) is attached as an Appendix to the application. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.
Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.
Methodology—Summary of Standard Procedures and Techniques.
General
This invention provides Neisseria meningitidis menB nucleotide sequences, amino acid sequences encoded therein. With these disclosed sequences, nucleic acid probe assays and expression cassettes and vectors can be produced. The expression vectors can be transformed into host cells to produce proteins. The purified or isolated polypeptides (which may also be chemically synthesized) can be used to produce antibodies to detect menB proteins. Also, the host cells or extracts can be utilized for biological assays to isolate agonists or antagonists. In addition, with these sequences one can search to identify open reading frames and identify amino acid sequences. The proteins may also be used in immunogenic compositions, antigenic compositions and as vaccine components.
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g., Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D. N Glover ed. 1985); Oligonucleotide Synthesis (M. J. Gait ed, 1984); Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription and Translation (B. D. Hames & S. J. Higgins eds. 1984); Animal Cell Culture (R. I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J. H. Miller and M. P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell eds 1986).
Standard abbreviations for nucleotides and amino acids are used in this specification.
All publications, patents, and patent applications cited herein are incorporated in full by reference.
Expression Systems
The Neisseria menB nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, plant cells, baculoviruses, bacteria, and yeast.
i. Mammalian Systems
Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5′ end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation (Sambrook et al. (1989) “Expression of Cloned Genes in Mammalian Cells.†In Molecular Cloning: A Laboratory Manual, 2nd ed.).
Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible). Depending on the promoter selected, many promotes may be inducible using known substrates, such as the use of the mouse mammary tumor virus (MMTV) promoter with the glucocorticoid responsive element (GRE) that is induced by glucocorticoid in hormone-responsive transformed cells (see for example, U.S. Pat. No. 5,783,681).
The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter (Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.). Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer (Dijkema et al (1985) EMBO J. 4:761) and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus (Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777) and from human cytomegalovirus (Boshart et al. (1985) Cell 41:521). Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion (Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237).
A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.
Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.
Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3′ to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3′ terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation (Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) “Termination and 3′ end processing of eukaryotic RNA. In Transcription and splicing (ed. B. D. Hames and D. M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105). These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 (Sambrook et al (1989) “Expression of cloned genes in cultured mammalian cells.†In Molecular Cloning: A Laboratory Manual).
Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 (Gluzman (1981) Cell 23:175) or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replication systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 (Kaufman et al. (1989) Mol. Cell. Biol. 9:946) and pHEBO (Shimizu et al. (1986) Mol. Cell. Biol. 6:1074).
The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines.
ii. Plant Cellular Expression Systems
There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: U.S. Pat. No. 5,693,506; U.S. Pat. No. 5,659,122; and U.S. Pat. No. 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R. L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038 (1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)
Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, Plant Mol. Biol. Reptr, 11(2):165-185.
Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.
The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5′ untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5′ and 3′ ends of the cassette allow for easy insertion into a pre-existing vector.
A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.
Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host\'s splicosome machinery. If so, site-directed mutagenesis of the “intron†region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, Cell 41:95-105, 1985.
The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991, Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.
The vector may also be introduced into the plant cells by electroporation. (Fromm et al., Proc. Natl. Acad. Sci. USA 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.
All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.
Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.
In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.
iii. Baculovirus Systems
The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.
After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, inter alia, Invitrogen, San Diego Calif. (“MAXBAC™†kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafter “Summers and Smith†).
Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.
Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, Virology (1989) 17:31.
The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.
Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5′ to 3′) transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.
Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) “The Regulation of Baculovirus Gene Expression,†in: The Molecular Biology of Baculoviruses (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.
DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human (alpha) α-interferon, Maeda et al., (1985), Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Molec. Cell. Biol. 8:3129; human IL-2, Smith et al., (1985) Proc. Nat\'l Acad. Sci. USA, 82:8404; mouse IL-3, (Miyajima et al., (1987) Gene 58:273; and human glucocerebrosidase, Martin et al. (1988) DNA, 7:99, can also be used to provide for secretion in insects.
A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by in vitro incubation with cyanogen bromide.
Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.
After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus—usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5 kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5′ and 3′ by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.
The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 μm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plagued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. Current Protocols in Microbiology Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).
Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (PCT Pub. No. WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).
Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g., Summers and Smith supra.
The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g., HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g., proteins, lipids and polysaccharides.
In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.
iv. Bacterial Systems
Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5′) to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) (Raibaud et al. (1984) Annu. Rev. Genet. 18:173). Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.
Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) (Chang et al. (1977) Nature 198:1056), and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) (Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; U.S. Pat. No. 4,738,921; EPO Publ. Nos. 036 776 and 121 775). The beta-lactamase (bla) promoter system (Weissmann (1981) “The cloning of interferon and other mistakes.†In Interferon 3 (ed. I. Gresser)), bacteriophage lambda PL (Shimatake et al. (1981) Nature 292:128) and T5 (U.S. Pat. No. 4,689,406) promoter systems also provide useful promoter sequences.
In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter (U.S. Pat. No. 4,551,433). For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor (Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21). Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system (Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad. Sci. 82:1074). In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO Publ. No. 267 851).
In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon (Shine et al. (1975) Nature 254:34). The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3′ end of E. coli 16S rRNA (Steitz et al. (1979) “Genetic signals and nucleotide sequences in messenger RNA.†In Biological Regulation and Development: Gene Expression (ed. R. F. Goldberger)). To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site, it is often necessary to optimize the distance between the SD sequence and the ATG of the eukaryotic gene (Sambrook et al. (1989) “Expression of cloned genes in Escherichia coli.†In Molecular Cloning: A Laboratory Manual).
A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo or in vitro incubation with a bacterial methionine N-terminal peptidase (EPO Publ. No. 219 237).
Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5′ end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5′ terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene (Nagai et al. (1984) Nature 309:810). Fusion proteins can also be made with sequences from the lacZ (Jia et al. (1987) Gene 60:197), trpE (Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11), and Chey (EPO Publ. No. 324 647) genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated (Miller et al. (1989) Bio/Technology 7:698).
Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria (U.S. Pat. No. 4,336,336). The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either in vivo or in vitro encoded between the signal peptide fragment and the foreign gene.
DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the E. coli outer membrane protein gene (ompA) (Masui et al. (1983), in: Experimental Manipulation of Gene Expression; Ghrayeb et al. (1984) EMBO J. 3:2437) and the E. coli alkaline phosphatase signal sequence (phoA) (Oka et al. (1985) Proc. Natl. Acad. Sci. 82:7212). As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis (Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EPO Publ. No. 244 042).
Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3′ to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the trp gene in E. coli as well as other biosynthetic genes.
Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.
Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EPO Publ. No. 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.
Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline (Davies et al. (1978) Annu. Rev. Microbiol. 32:469). Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.
Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.
Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis (Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541), Escherichia coli (Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EPO Publ. Nos. 036 776, 136 829 and 136 907), Streptococcus cremoris (Powell et al. (1988) Appl. Environ. Microbiol. 54:655); Streptococcus lividans (Powell et al. (1988) Appl. Environ. Microbiol. 54:655), Streptomyces lividans (U.S. Pat. No. 4,745,056).
Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl2 or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. (See e.g., use of Bacillus: Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541; use of Campylobacter: Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; and Wang et al. (1990) J. Bacteriol. 172:949; use of Escherichia coli: Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) “An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H. W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; use of Lactobacillus: Chassy et al. (1987) FEMS Microbiol. Lett. 44:173; use of Pseudomonas: Fiedler et al. (1988) Anal. Biochem 170:38; use of Staphylococcus: Augustin et al. (1990) FEMS Microbiol. Lett. 66:203; use of Streptococcus: Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) “Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412.
v. Yeast Expression
Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the “TATA Box†) and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.
Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EPO Publ. No. 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO Publ. No. 329 203). The yeast PHO5 gene, encoding acid phosphatase, also provides useful promoter sequences (Myanohara et al. (1983) Proc. Natl. Acad. Sci. USA 80:1).
In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Pat. Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EPO Publ. No. 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, (Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) “The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae,†in: Plasmids of Medical, Environmental and Commercial Importance (eds. K. N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109).
A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.
Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, plant, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5′ end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5′ terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g., EPO Publ. No. 196056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g., WO88/024066).
Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.
DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EPO Publ. No. 012 873; JPO Publ. No. 62:096,086) and the A-factor gene (U.S. Pat. No. 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EPO Publ. No. 060 057).
A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a “pre†signal sequence, and a “pro†region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Pat. Nos. 4,546,083 and 4,870,008; EPO Publ. No. 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (See e.g., PCT Publ. No. WO 89/02463.)
Usually, transcription termination sequences recognized by yeast are regulatory regions located 3′ to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.
Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 (Botstein et al. (1979) Gene 8:17-24), pC1/1 (Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646), and YRp17 (Stinchcomb et al. (1982) J. Mol. Biol. 158:157). In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g., Brake et al., supra.
Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome (Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245). An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced (Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750). The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.
Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions (Butt et al. (1987) Microbiol, Rev. 51:351).
Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.
Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors and methods of introducing exogenous DNA into yeast hosts have been developed for, inter alia, the following yeasts: Candida albicans (Kurtz, et al. (1986) Mol. Cell. Biol. 6:142); Candida maltosa (Kunze, et al. (1985) J. Basic Microbiol. 25:141); Hansenula polymorpha (Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302); Kluyveromyces fragilis (Das, et al. (1984) J. Bacteriol. 158:1165); Kluyveromyces lactis (De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135); Pichia guillerimondii (Kunze et al. (1985) J. Basic Microbiol. 25:141); Pichia pastoris (Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Pat. Nos. 4,837,148 and 4,929,555); Saccharomyces cerevisiae (Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163); Schizosaccharomyces pombe (Beach and Nurse (1981) Nature 300:706); and Yarrowia lipolytica (Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49).
Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g., [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; U.S. Pat. Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75; 1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].
DEFINITIONSA composition containing X is “substantially free of†Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.
A “conserved†Neisseria amino acid fragment or protein is one that is present in a particular Neisserial protein in at least x % of Neisseria. The value of x may be 50% or more, e.g., 66%, 75%, 80%, 90%, 95% or even 100% (i.e. the amino acid is found in the protein in question in all Neisseria). In order to determine whether an amino acid is “conserved†in a particular Neisserial protein, it is necessary to compare that amino acid residue in the sequences of the protein in question from a plurality of different Neisseria (a reference population). The reference population may include a number of different Neisseria species or may include a single species. The reference population may include a number of different serogroups of a particular species or a single serogroup. A preferred reference population consists of the 5 most common Neisseria The term “heterologous†refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell.
An “origin of replication†is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.
A “mutant†sequence is defined as a DNA, RNA or amino acid sequence differing from but having homology with the native or disclosed sequence. Depending on the particular sequence, the degree of homology (sequence identity) between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) which is calculated as described above. As used herein, an “allelic variant†of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs at essentially the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5′ or 3′ untranslated regions of the gene, such as in regulatory control regions. (see, for example, U.S. Pat. No. 5,753,235).
Antibodies
As used herein, the term “antibody†refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An “antibody combining site†is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. “Antibody†includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanized antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.
Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisseria menB proteins. Antibodies elicited against the proteins of the present invention bind to antigenic polypeptides or proteins or protein fragments that are present and specifically associated with strains of Neisseria meningitidis menB. In some instances, these antigens may be associated with specific strains, such as those antigens specific for the menB strains. The antibodies of the invention may be immobilized to a matrix and utilized in an immunoassay or on an affinity chromatography column, to enable the detection and/or separation of polypeptides, proteins or protein fragments or cells comprising such polypeptides, proteins or protein fragments. Alternatively, such polypeptides, proteins or protein fragments may be immobilized so as to detect antibodies bindably specific thereto.
Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund\'s complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 μg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund\'s incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25° C. for one hour, followed by incubating at 4° C. for 2-18 hours. The serum is recovered by centrifugation (e.g., 1,000 g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.
Monoclonal antibodies are prepared using the standard method of Kohler & Milstein (Nature (1975) 256:495-96), or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells that express membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (e.g., hypoxanthine, aminopterin, thymidine medium, “HAT†). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either in vitro (e.g., in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).
If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly 32P and 125I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3′,5,5′-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. “Specific binding partner†refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.
Antigens, immunogens, polypeptides, proteins or protein fragments of the present invention elicit formation of specific binding partner antibodies. These antigens, immunogens, polypeptides, proteins or protein fragments of the present invention comprise immunogenic compositions of the present invention. Such immunogenic compositions may further comprise or include adjuvants, carriers, or other compositions that promote or enhance or stabilize the antigens, polypeptides, proteins or protein fragments of the present invention. Such adjuvants and carriers will be readily apparent to those of ordinary skill in the art.
Pharmaceutical Compositions
Pharmaceutical compositions can comprise (include) either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.
The term “therapeutically effective amount†as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature, when given to a patient that is febrile. The precise effective amount for a subject will depend upon the subject\'s size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgment of the clinician.
For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.
A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier†refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.
Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington\'s Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).
Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.
Delivery Methods
Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.
Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal and transcutaneous applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.
Vaccines
Vaccines according to the invention may either be prophylactic (i.e., to prevent infection) or therapeutic (i.e., to treat disease after infection).
Such vaccines comprise immunizing antigen(s) or immunogen(s), immunogenic polypeptide, protein(s) or protein fragments, or nucleic acids (e.g., ribonucleic acid or deoxyribonucleic acid), usually in combination with “pharmaceutically acceptable carriers,†which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents (“adjuvants†). Furthermore, the immunogen or antigen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, H. pylori, etc. pathogens.
Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59 (PCT Publ. No. WO 90/14837), containing 5% Squalene, 0.5% TWEEN 80â„¢, and 0.5% SPAN 85â„¢ (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, Mass.), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% PLURONICâ„¢-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RIBIâ„¢ adjuvant system (RAS), (Ribi Immunochem, Hamilton, Mont.) containing 2% Squalene, 0.2% TWEEN 80â„¢, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL+CWS (DETOXâ„¢); (3) saponin adjuvants, such as STIMULONâ„¢ (Cambridge Bioscience, Worcester, Mass.) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund\'s Adjuvant (CFA) and Incomplete Freund\'s Adjuvant (IFA); (5) cytokines, such as interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59 are preferred.
As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.
The vaccine compositions comprising immunogenic compositions (e.g., which may include the antigen, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Alternatively, vaccine compositions comprising immunogenic compositions may comprise an antigen, polypeptide, protein, protein fragment or nucleic acid in a pharmaceutically acceptable carrier.
More specifically, vaccines comprising immunogenic compositions comprise an immunologically effective amount of the immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By “immunologically effective amount†, it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g., nonhuman primate, primate, etc.), the capacity of the individual\'s immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor\'s assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
Typically, the vaccine compositions or immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.
The immunogenic compositions are conventionally administered parenterally, e.g., by injection, either subcutaneously or intramuscularly. Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal and transcutaneous applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.
As an alternative to protein-based vaccines, DNA vaccination may be employed (e.g., Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648).
Gene Delivery Vehicles
Gene therapy vehicles for delivery of constructs, including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in in vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.
The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.
Retroviral vectors are well known in the art, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O\'Neill (1985) J. Virol. 53:160) polytropic retroviruses e.g., MCF and MCF-MLV (see Kelly (1983) J. Virol. 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.
Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.
These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see U.S. Pat. No. 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.
Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or “VCLs†) for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g., HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.
Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection (“ATCC†) or isolated from known sources using commonly available techniques.
Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, U.S. Pat. No. 5,219,740, U.S. Pat. No. 4,405,712, U.S. Pat. No. 4,861,719, U.S. Pat. No. 4,980,289, U.S. Pat. No. 4,777,127, U.S. Pat. No. 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.
Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (i.e., there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in U.S. Pat. No. 5,478,745. Still other vectors are those disclosed in Carter U.S. Pat. No. 4,797,368 and Muzyczka U.S. Pat. No. 5,139,941, Chartejee U.S. Pat. No. 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in U.S. Pat. No. 5,354,678, U.S. Pat. No. 5,173,414, U.S. Pat. No. 5,139,941, and U.S. Pat. No. 5,252,479.
The gene therapy vectors comprising sequences of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in U.S. Pat. No. 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.
Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in U.S. Pat. Nos. 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Ser. No. 08/405,627, filed Mar. 15, 1995, WO94/21792, WO92/10578, WO95/07994, U.S. Pat. No. 5,091,309 and U.S. Pat. No. 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see U.S. Ser. No. 08/679,640).
DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.
Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in U.S. Pat. No. 4,603,112 and U.S. Pat. No. 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in U.S. Pat. No. 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O\'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.
Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see U.S. Ser. No. 08/366,787, filed Dec. 30, 1994 and Curiel (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see U.S. Ser. No. 08/240,030, filed May 9, 1994, and U.S. Ser. No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in U.S. Pat. No. 5,149,655, ionizing radiation as described in U.S. Pat. No. 5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) Mol Cell Biol 14:2411-2418 and in Woffendin (1994) Proc Natl Acad Sci 91:1581-1585.
Particle mediated gene transfer may be employed, for example see U.S. Ser. No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.
Naked DNA may also be employed to transform a host cell. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Pat. No. 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.
Liposomes that can act as gene delivery vehicles are described in U.S. Pat. No. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in U.S. Ser. No. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Pat. No. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. Pat. No. 5,206,152 and WO92/11033.
Exemplary liposome and polycationic gene delivery vehicles are those described in U.S. Pat. Nos. 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.
A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.
Delivery Methods
Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.
Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.
Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.
Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.
Polynucleotide and Polypeptide Pharmaceutical Compositions
In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.
A. Polypeptides
One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.
B. Hormones, Vitamins, Etc.
Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.
C. Polyalkylenes, Polysaccharides, Etc.
Also, polyalkylene glycol can be included with the desired polynucleotides or polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccarides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)
D. Lipids, and Liposomes
The desired polynucleotide or polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.
Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide or polypeptide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) Biochim. Biophys. Acta. 1097:1-17; Straubinger (1983) Meth. Enzymol. 101:512-527.
Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) Proc. Natl. Acad. Sci. USA 84:7413-7416); mRNA (Malone (1989) Proc. Natl. Acad. Sci. USA 86:6077-6081); and purified transcription factors (Debs (1990) J. Biol. Chem. 265:10189-10192), in functional form.
Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.
Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.
The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.
E. Lipoproteins
In addition, lipoproteins can be included with the polynucleotide or polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.
Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.
A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.
The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.
Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in Meth. Enzymol. 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.
Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in Meth. Enzymol. (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750.
Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) Annu Rev Biophys Chem 15:403 and Radding (1958) Biochim Biophys Acta 30: 443.
Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Mass., USA.
Further description of lipoproteins can be found in Zuckermann et al., PCT. Appln. No. US97/14465.
F. Polycationic Agents
Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide or polypeptide to be delivered.
Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.
The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.
Organic polycationic agents include: spermine, spermidine, and purtrescine.
The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.
Synthetic Polycationic Agents
Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. LIPOFECTINâ„¢, and LIPOFECTAMINEâ„¢ are monomers that form polycationic complexes when combined with polynucleotides or polypeptides.
Immunodiagnostic Assays
Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.
Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.
Nucleic Acid Hybridisation
“Hybridization†refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt\'s reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook et al. [supra] Volume 2, chapter 9, pages 9.47 to 9.57.
“Stringency†refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200° C. below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.
Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1 μg for a plasmid or phage digest to 10−9 to 10−8 g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μg of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 108 cpm/μg. For a single-copy mammalian gene a conservative approach would start with 10 μg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 108 cpm/μg, resulting in an exposure time of ˜24 hours.
Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:\n
\nTm=81+16.6(log10Ci)+0.4[% (G+C)]−0.6(% formamide)−600/n−1.5(% mismatch).\n
where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).
In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.
In general, convenient hybridization temperatures in the presence of 50% formamide are 42° C. for a probe with is 95% to 100% homologous to the target fragment, 37° C. for 90% to 95% homology, and 32° C. for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.
Nucleic Acid Probe Assays
Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to “hybridize†with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.
The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.
The probe sequence need not be identical to the Neisserial sequence (or its complement)—some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5′ end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.
The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.
Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.
The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].
One example of a nucleotide hybridization assay is described by Urdea et al. in international patent application WO92/02526 [see also U.S. Pat. No. 5,124,246].
Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; U.S. Pat. No. 4,683,195; and U.S. Pat. No. 4,683,202. Two “primer†nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.
A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).
Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.
EXAMPLESThe examples describe nucleic acid sequences which have been identified in N. meningitidis, and N. gonorrhoeae along with their respective and putative translation products. Not all of the nucleic acid sequences are complete ie. they encode less than the full-length wild-type protein.
The examples are generally in the following format:\n
- a nucleotide sequence which has been identified in N. meningitidis
- the putative translation product of said N. meningitidis sequence
- a computer analysis of said translation product based on database comparisons
- a corresponding nucleotide sequence identified from N. gonorrhoeae
- the putative translation product of said N. gonorrhoeae sequence
- a comparison of the percentage of identity between the translation product of the N. meningitidis sequence and the N. gonorrhoeae sequence
- a description of the characteristics of the protein which indicates that it might be suitably antigenic or immunogenic.
Sequence comparisons were performed at NCBI (ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLASTn, BLASTp, tBLASTn, BLASTx, & tBLASTx [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.
Dots within nucleotide sequences represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters represent ambiguities which arose during alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).
Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical evaluation of the hydropathy of membrane proteins (1990) Eur J Biochem 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.
Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).
Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).
For each of the following examples: based on the presence of a putative leader sequence and/or several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their respective epitopes, could be useful antigens or immunogenic compositions for vaccines or diagnostics.
The standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilize the disclosed sequences for vaccination or diagnostic purposes) were summarized above. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.
In particular, the following methods were used to express, purify and biochemically characterize the proteins of the invention.
Chromosomal DNA Preparation
N. meningitidis strain 2996 was grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% Sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH 8.0). After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml lysis solution (50 mM NaCl, 1% Na-SARKOSYL™, 50 μg/ml Proteinase K), and the suspension was incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl3/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4.0 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.
Oligonucleotide Design
Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by designing the 5′ primers to sequence immediately downstream from the predicted leader sequence.
For most ORFs, the 5′ primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, EcoRI-NdeI or EcoRI-NheI), depending on the restriction pattern of the gene of interest. The 3′ primers included a XhoI or a HindIII restriction site (table 1). This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-XhoI, BamHI-HindIII, EcoRI-XhoI, or EcoRI-HindIII), and pET21b+ (using either NdeI-XhoI, NheI-XhoI, NdeI-HindIII, or NheI-HindIII).
5′-end primer tail:
CGCGGATCCCATATG(BamHI-NdeI)
|
CGCGGATCCGCTAGC(BamHI-NheI)
|
CCGGAATTCTAGATATC(EcoRI-NdeI)
|
CCGGAATTCTAGCTAGC(EcoRI-NheI)
|
3′-end primer tail:
CCCGCTCGAG(XhoI)
|
CCCGCTCGAG(HindIII)
For cloning ORFs into the pGEX-His Vector, the 5′ and 3′ primers contained only one restriction enzyme site (EcoRI, KpnI or SalI for the 5′ primers and PstI, XbaI, SphI or SalI for the 3′ primers). Again restriction sites were chosen according to the particular restriction pattern of the gene (table 1).
5′-end primer tail:
(AAA)AAAGAATTC(EcoRI)
|
(AAA)AAAGGATCC(KpnI)
|
3′-end primer tail:
(AAA)AAACTGCAG(PstI)
|
(AAA)AAATCTAGA(XbaI)
|
5′ or 3′-end primer tail:
AAAGCATGC(SphI)
|
AAAAAAGAATCC(PstI)
As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The melting temperature depended on the number and type of hybridizing nucleotides in the whole primer, and was determined for each primer using the formulae:\n
\nTm=4(G+C)+2(A+T) (tail excluded)\n
\nTm=64.9+0.41(% GC)−600/N (whole primer)\n
The melting temperature of the selected oligonucleotides were usually 65-70° C. for the whole oligo and 50-55° C. for the hybridising region alone.
Table 1 shows the forward and reverse primers used for each amplification. In certain cases, the sequences of the primer does not match exactly the sequence of the predicted ORF. This is because when initial amplifications were performed, the complete 5′ and/or 3′ sequences for some meningococcal B ORFs were not be known. However, the corresponding sequences had been identified in Gonococcus or in Meningococcus A. Hence, when the Meningococcus B sequence was incomplete or uncertain, Gonococcus or in Meningococcus A sequences were used as the basis for the primer design. These sequences were altered to take account of codon preference. It can be appreciated that, once the complete sequence is identified, this approach will no longer be necessary.
Oligonucleotides were synthesized using a Perkin Elmer 394 DNA/RNA SYNTHESIZER™, eluted from the columns in 2.0 ml NH4OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in either 100 μl or 1.0 ml of water. The OD260 was determined using a Perkin Elmer LAMBDA BIO™ spectophotometer and the concentration adjusted to 2-10 pmol/μl.
Amplification
The standard PCR protocol was as follows: 50-200 ng of genomic DNA was used as a template in the presence of 20-40 μM of each oligonucleotide primer, 400-800 μM dNTPs solution, 1×PCR buffer (including 1.5 mM MgCl2), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AMPLITAQ™, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase). In some cases, PCR was optimised by the addition of 100 of DMSO or 500 of 2M Betaine.
After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95° C.), each sample underwent a two-step amplification. The first 5 cycles were performed using the hybridization temperature that excluded the restriction enzyme tail of the primer (see above). This was followed by 30 cycles using the hybridization temperature calculated for the whole length oligos. The cycles were followed by a final 10 minute extension step at 72° C. The standard cycles were as follows:
|
DenaturationHybridisationElongation
|
|
First 5 cycles30 seconds30 seconds30-60 seconds
95° C.50-55° C.72° C.
Last 30 cycles30 seconds30 seconds30-60 seconds
95° C.65-70° C.72° C.
|
The elongation time varied according to the length of the ORF to be amplified. Amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% (w/v) agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.
The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a volume suitable to be loaded on a 1.0% agarose gel. The DNA fragment corresponding to the band of the correct size was purified using the Qiagen Gel Extraction Kit, following the manufacturer\'s protocol. DNA fragments were eluted in a volume of 30 μl or 50 μl of either H2O or 10 mM Tris, pH 8.5.
Digestion of PCR Fragments
The purified DNA corresponding to the amplified fragment was double-digested with the appropriate restriction enzymes for; cloning into pET-21b+ and expressing the protein as a C-terminus His-tagged fusion, for cloning into pGEX-KG and expressing the protein as a N-terminus GST-fusion, and for cloning into pGEX-His and expressing the protein as a N-terminus GST-his tagged fusion.
Each purified DNA fragment was incubated at 37° C. for 3 hours to overnight with 20 units of appropriate restriction enzyme (New England Biolabs) in a either 30 or 40 μl in the presence of suitable digestion buffer. Digested products were purified using the QIAquick PCR purification kit (following the manufacturer\'s instructions) and eluted in a final volume of 30 or 50 μl of either H2O or 10 mM Tris, pH 8.5. The DNA concentration was determined by quantitative agarose gel electrophoresis (1.0% gel) in the presence of a titrated molecular weight marker.
Digestion of the Cloning Vectors (pET22B, pGEX-KG, pTRC-His A, pET21b+, pGEX-KG, and pGEX-His)
The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream of the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia). 10 μg plasmid was double-digested with 50 units of each restriction enzyme in 200 μl reaction volume in the presence of appropriate buffer by overnight incubation at 37° C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50 μl of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD260 of the sample, and adjusted to 50 μl. 1 μl of plasmid was used for each cloning procedure.
10 μg plasmid was double-digested with 50 units of each restriction enzyme in 200 reaction volume in the presence of appropriate buffer by overnight incubation at 37° C. The digest was loaded onto a 1% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit. DNA was eluted in 50 μl of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD260 and the concentration adjusted to 50 μg/μl. 1 μl of plasmid was used for each cloning procedure.
Cloning
For some ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20 μl, a molar ratio of 3:1 fragment/vector was ligated using 0.5 μl of NEB T4 DNA ligase (400 units/μl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer “Rapid Ligation Kit†, following the manufacturer\'s instructions.
In order to introduce the recombinant plasmid in a suitable strain, 100 μl E. coli DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37° C. for 3 minutes, then, after adding 800 μl LB broth, again at 37° C. for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200 μl of the supernatant. The suspension was then plated on LB ampicillin (100 mg/ml).
The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37° C. in either 2 ml (pGEX or pTC clones) or 5 ml (pET clones) LB broth+100 μg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer\'s instructions, to a final volume of 30 μl. 5 μl of each individual miniprep (approximately 1 g) were digested with either NdeI/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.
For other ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated in both pET21b+ and pGEX-KG. A molar ratio of 3:1 fragment/vector was used in a final volume of 20 μl, that included 0.5 μl of T4 DNA ligase (400 units/μl, NEB) and ligation buffer supplied by the manufacturer. The reaction was performed at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer “Rapid Ligation Kit†and the manufacturer\'s protocol.
Recombinant plasmid was transformed into 100 μl of competent E. coli DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice then at 37° C. for 3 minutes. This was followed by addition of 800 μl LB broth and incubation at 37° C. for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200 μl of the supernatant, and plated on LB ampicillin (100 mg/ml) agar.
Screening for recombinant clones was performed by growing 5 randomly selected colonies overnight at 37° C. in either 2.0 ml (pGEX-KG clones) or 5.0 ml (pET clones) LB broth+100 μg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer\'s instructions. Approximately 1 μg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of the insert.
ORFs were cloned in PGEX-His, by doubly-digesting the PC product and ligating into similarly digested vector. After cloning, recombinant plasmids were transformed into the E. coli host W3110. Individual clones were grown overnight at 37° C. in LB broth with 50 μg/ml ampicillin.
Certain ORFs may be cloned into the pGEX-HIS vector using EcoRI-PstI cloning sites, or EcoRI-SalI, or SalI-PstI. After cloning, the recombinant plasmids may be introduced in the E. coli host W3110.
Expression
Each ORF cloned into the expression vector may then be transformed into the strain suitable for expression of the recombinant protein product. 1 μl of each construct was used to transform 30 μl of E. coli BL21 (pGEX vector), E. coli TOP 10 (pTRC vector) or E. coli BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same E. coli strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 μg/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, making sure that the OD600 ranged between 0.1 and 0.15. The flasks were incubated at 30° C. into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addiction of 1 mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2 mM. After 3 hours incubation at 30° C., the final concentration of the sample was checked by OD. In order to check expression, 1 ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000 g and the pellet resuspended in PBS for further use.
GST-Fusion Proteins Large-Scale Purification.
For some ORFs, a single colony was grown overnight at 37° C. on LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD550 0.8-1. Protein expression was induced with 0.2 mM IPTG followed by three hours incubation. The culture was centrifuged at 8000 rpm at 4° C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150 μl GLUTATHIONE-SEPHAROSE 4B™ resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4 C. The resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1 ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2 ml cold PBS until the flow-through reached OD280 of 0.02-0.06. The GST-fusion protein was eluted by addition of 700 μl cold Glutathione elution buffer (10 mM reduced glutathione, 50 mM Tris-HCl) and fractions collected until the OD280 was 0.1. 21 μl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M″) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26 kDa, this value must be added to the MW of each GST-fusion protein.
For other ORFs, for each clone to be purified as a GST-fusion, a single colony was streaked out and grown overnight at 37° C. on LB/Amp (100 μg/ml) agar plate. An isolated colony from this plate was inoculated into 20 ml of LB/Amp (100 μg/ml) liquid medium and grown overnight at 37° C. with shaking. The overnight culture was diluted 1:30 into 600 ml of LB/Amp (100 μg/ml) liquid medium and allowed to grow at the optimal temperature (20-37° C.) until the OD550 reached 0.6-0.8. Recombinant protein expression was induced by addition of IPTG (final concentration 0.2 mM) and the culture incubated for a further 3 hours. The bacteria were harvested by centrifugation at 8000×g for 15 min at 4° C.
The bacterial pellet was resuspended in 7.5 ml cold PBS. Cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13 000×g for 30 min at 4° C. The supernatant was collected and mixed with 150 μl GLUTATHIONE-SEPHAROSE 4B™ resin (Pharmacia), previously equilibrated with PBS, and incubated at room temperature with gentle agitation for 30 min. The batch-wise preparation was centrifuged at 700×g for 5 min at 4° C. and the supernatant discarded. The resin was washed twice (batchwise) with 10 ml cold PBS for 10 min, resuspended in 1 ml cold PBS, and loaded onto a disposable column. The resin continued to be washed twice with cold PBS, until the OD280nm of the flow-through reached 0.02-0.01. The GST-fusion protein was eluted by addition of 700 μl cold glutathione elution buffer (10 mM reduced glutathione, 50 mM Tris-HCl pH 8.0) and fractions collected, until the OD280nm of the eluate indicated all the recombinant protein was obtained. 20 μl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. The molecular mass of the purified proteins was determined using either the Bio-Rad broad range molecular weight standard (M1) (200, 116, 97.4, 66.2, 45.0, 31.0, 21.5, 14.4, 6.5 kDa) or the Amersham Rainbow Marker (M2) (220, 66.2, 46.0, 30.0, 21.5, 14.3 kDa). The molecular weights of GST-fusion proteins are a combination of the 26 kDa GST protein and its fusion partner. Protein concentrations were estimated using the Bradford assay.
His-Fusion Soluble Proteins Large-Scale Purification.
For some ORFs, a single colony was grown overnight at 37° C. on a LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600 ml fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD550 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4° C., the supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold 10 mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8). The cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150 μl Ni2+-resin (Pharmacia) (previously washed with 10 mM imidazole buffer) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4° C. The resin was washed twice with 10 ml cold 10 mM imidazole buffer for 10 minutes, resuspended in 1 ml cold 10 mM imidazole buffer and loaded on a disposable column. The resin was washed at 4° C. with 2 ml cold 10 mM imidazole buffer until the flow-through reached the O.D280 of 0.02-0.06. The resin was washed with 2 ml cold 20 mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) until the flow-through reached the O.D280 of 0.02-0.06. The His-fusion protein was eluted by addition of 700 μl cold 250 mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) and fractions collected until the O.D280 was 0.1. 21 μl of each fraction were loaded on a 12% SDS gel.
His-Fusion Insoluble Proteins Large-Scale Purification.
A single colony was grown overnight at 37° C. on a LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml fresh medium and let to grow at the optimal temperature (37° C.) to O.D550 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4° C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml buffer B (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8). The cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was stored at −20° C., while the pellets were resuspended in 2 ml guanidine buffer (6M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes. The supernatant was mixed with 150 μl Ni2+-resin (Pharmacia) (previously washed with buffer B) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4° C. The resin was washed twice with 10 ml buffer B for 10 minutes, resuspended in 1 ml buffer B, and loaded on a disposable column. The resin was washed at room temperature with 2 ml buffer B until the flow-through reached the OD280 of 0.02-0.06. The resin was washed with 2 ml buffer C (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3) until the flow-through reached the O.D280 of 0.02-0.06. The His-fusion protein was eluted by addition of 700 μl elution buffer (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5) and fractions collected until the OD280 was 0.1. 21 μl of each fraction were loaded on a 12% SDS gel.
Purification of His-fusion Proteins.
For each clone to be purified as a His-fusion, a single colony was streaked out and grown overnight at 37° C. on LB/Amp (100 μg/ml) agar plate. An isolated colony from this plate was inoculated into 20 ml of LB/Amp (100 μg/ml) liquid medium and grown overnight at 37° C. with shaking. The overnight culture was diluted 1:30 into 600 ml of LB/Amp (100 μg/ml) liquid medium and allowed to grow at the optimal temperature (20-37° C.) until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0 mM) and the culture incubated for a further 3 hours. The bacteria were harvested by centrifugation at 8000×g for 15 min at 4° C.
The bacterial pellet was resuspended in 7.5 ml either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (8M urea, 10 mM TrisHCl, 100 mM phosphate buffer, pH 8.8) for insoluble proteins. Cells were disrupted by sonication on ice four times for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13 000×g for 30 min at 4° C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated with a Dounce homogenizer for 10 cycles. The homogenate was centrifuged at 13 000×g for 40 min and the supernatant retained.
Supernatants for both soluble and insoluble preparations were mixed with 150 μl Ni2+-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was CHELATING SEPHAROSE FAST FLOW™ (Pharmacia), prepared according to the manufacturers protocol. The batch-wise preparation was centrifuged at 700×g for 5 min at 4° C. and the supernatant discarded. The resin was washed twice (batch-wise) with 10 ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4° C. or (ii) buffer B at room temperature, the OD280nm of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8.0) or (ii) buffer D (8M urea, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3) until the OD280nm of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700 μl of either (1) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (8 M urea, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5) and fractions collected until the O.D280nm indicated all the recombinant protein was obtained. 20 μl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. Protein concentrations were estimated using the Bradford assay.
His-Fusion Proteins Renaturation
In the cases where denaturation was required to solubilize proteins, a renaturation step was employed prior to immunization. Glycerol was added to the denatured fractions obtained above to a final concentration of 10% (v/v). The proteins were then diluted to 200 μg/ml using dialysis buffer I (10% (v/v) glycerol, 0.5M arginine, 50 mM phosphate buffer, 5 mM reduced glutathione, 0.5 mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4° C. Further dialysis was performed with buffer II (10% (v/v) glycerol, 0.5M arginine, 50 mM phosphate buffer, 50 mM reduced glutathione, 5.0 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C.
Alternatively, 10% glycerol was added to the denatured proteins. The proteins were then diluted to 20 μg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50 mM phosphate buffer, 5 mM reduced glutathione, 0.5 mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4° C. for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50 mM phosphate buffer, 5 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C.
Protein concentration was evaluated using the formula:\n
\nProtein (mg/ml)=(1.55×OD280)—(0.76×OD260)\n
\nPurification of Proteins\n
To analyse the solubility, pellets obtained from 3.0 ml cultures were resuspended in 500 μl buffer M1 (PBS pH 7.2). 25 μl of lysozyme (10 mg/ml) was added and the bacteria incubated for 15 min at 4° C. Cells were disrupted by sonication on ice four times for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13 000×g for 30 min at 4° C. The supernatant was collected and the pellet resuspended in buffer M2 [8M urea, 0.5M NaCl, 20 mM imidazole and 0.1 M NaH2PO4] and incubated for 3 to 4 hours at 4° C. After centrifugation, the supernatant was collected and the pellet resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20 mM imidazole and 0.1 M NaH2PO4] overnight at 4° C. The supernatants from all steps were analysed by SDS-PAGE. Some proteins were found to be soluble in PBS, others needed urea or guanidinium-HCl for solubilization.
For preparative scale purification, 500 ml cultures were induced and fusion proteins solubilized in either buffer M1, M2, or M3 using the procedure described above. Crude extracts were loaded onto a Ni-NTA superflow column (Qiagen) equilibrated with buffer M1, M2, or M3 depending on the solubilization buffer employed. Unbound material was eluted with the corresponding buffer containing 500 mM imidazole then dialysed against the same buffer in the absence of imidazole.
Mice Immunizations
20 μg of each purified protein are used to immunize mice intraperitoneally. In the case of some ORFs, Balb-C mice were immunised with Al(OH)3 as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For other ORFs, CD1 mice could be immunised using the same protocol. For ORFs 25 and 40, CD1 mice were immunised using Freund\'s adjuvant, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for still other ORFs, CD1 mice were immunised with Freund\'s adjuvant, but the immune response was measured on day 49. Alternatively, 20 μg of each purified protein was mixed with Freund\'s adjuvant and used to immunize CD1 mice intraperitoneally. For many of the proteins, the immunization was performed on days 1, 21 and 35, and immune response was monitored in samples taken on days 34 and 49. For some proteins, the third immunization was performed on day 28, rather than 35, and immune response was measured on days 20 and 42, rather than 34 and 49.
Elisa Assay (Sera Analysis)
The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7 ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then overnight at 4° C. with stiffing. 100 μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% TWEEN-20™ in PBS). 200 μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer: 1% BSA, 0.1% TWEEN-20™, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 90 minutes at 37° C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H2O) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl H2SO4 was added to each well and OD490 was followed. The ELISA was considered positive when OD490 was 2.5 times the respective pre-immune sera.
Alternatively, The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10 000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37° C. and then overnight at 4° C. with stirring. 100 μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% TWEEN-20™ in PBS). 200 μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer: 1% BSA, 0.1% TWEEN-20™, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H2O2) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl H2SO4 was added to each well and OD490 was followed. The ELISA titers were calculated arbitrarily as the dilution of sera which gave an OD490 value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD490 of 0.4 was higher than 1:400.
FACScan Bacteria Binding Assay Procedure.
The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaN3) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.07. 100 μl bacterial cells were added to each well of a Costar 96 well plate. 100 μl of diluted (1:200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4° C. Cells were centrifuged for 5 minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 μl/well of blocking buffer in each well. 100 μl of R-Phicoerytrin conjugated F(ab)2 goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4° C. Cells were spun down by centrifugation at 4000 rpm for 5 minutes and washed by addition of 200 μl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 μl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off; FSC-H Treshold:92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539. Compensation values: 0.
OMV Preparations
Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes and the bacteria disrupted by sonication for 10′ on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes and the total cell envelope fraction recovered by centrifugation at 50000 g at 4° C. for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000 g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10 mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.
Whole Extracts Preparation
Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30′ minutes.
Western Blotting
Purified proteins (500 ng/lane), outer membrane vesicles (5 μg) and total cell extracts (25 μl) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4° C., using transfer buffer (0.3% Tris base, 1.44% glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% TRITON X100™ in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% TRITON X100™ in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labeled anti-mouse Ig. The membrane was washed twice with 0.1% TRITON X100™ in PBS and developed with the OPTI-4CN SUBSTRATE KIT™ (Bio-Rad). The reaction was stopped by adding water.
Bactericidal Assay
MC58 and 2996 strains were grown overnight at 37° C. on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7 ml Mueller-Hinton broth. The suspension was incubated at 37° C. on a nutator and let to grow until OD620 was in between 0.5-0.8. The culture was aliquoted into sterile 1.5 ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey\'s buffer (Gibco) and resuspended in the same buffer to an OD620 of 0.5, diluted 1:20000 in Gey\'s buffer and stored at 25° C.
50 μl of Gey\'s buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25 μl of diluted (1:100) mice sera (dilution buffer: Gey\'s buffer/0.2% BSA) were added to each well and the plate incubated at 4° C. 25 μl of the previously described bacterial suspension were added to each well. 25 μl of either heat-inactivated (56° C. water bath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22 μl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37° C. with rotation and then 22 μl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 h were counted.
Gene Variability
The ORF4 and 919 genes were amplified by PCR on chromosomal DNA extracted from various Neisseria strains (see list of strains). The following oligonucleotides used as PCR primers were designed in the upstream and downstream regions of the genes:
(SEQ ID NO: 3266)
orf 4.1 (forward) CGAATCCGGACGGCAGGACTC
|
(SEQ ID NO: 3267)
orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG
|
(SEQ ID NO: 3268)
919.1 (forward) AAAATGCCTCTCCACGGCTG
or
|
(SEQ ID NO: 3269)
CTGCGCCCTGTGTTAAAATCCCCT
|
(SEQ ID NO: 3270)
919.6 (reverse) CAAATAAGAAAGGAATTTTG
or
|
(SEQ ID NO: 3271)
GGTATCGCAAAACTTCGCCTTAATGCG
The PCR cycling conditions were:
|
 1 cycle2 min. at 94°
30 cycles30 sec. at 94°
30 sec. at ~54° or ~60° (in according to Tm of the primers)
40 sec. at 72°
 1 cycle7 min. at 72°
|
The PCR products were purified from 1% agarose gel and sequenced using the following primers:
(SEQ ID NO: 3272)
orf 4.1(forward)CGAATCCGGACGGCAGGACTC
|
(SEQ ID NO: 3273)
orf 4.2(forward)CGACCGCGCCTTTGGGACTG
|
(SEQ ID NO: 3274)
orf 4.3(reverse)GGCAGGGAATGGCGGATTAAAG
|
(SEQ ID NO: 3275)
orf 4.4(reverse)TCTTTGAGTTTGATCCAACC
|
(SEQ ID NO: 3276)
919.1(forward)AAAATGCCTCTCCACGGCTG
or
|
(SEQ ID NO: 3277)
CTGCGCCCTGTGTTAAAATCCCCT
|
(SEQ ID NO: 3278)
919.2(forward)ATCCTTCCGCCTCGGCTGCG
|
(SEQ ID NO: 3279)
919.3(forward)AAAACAGCGGCACAATCGAC
|
(SEQ ID NO: 3280)
919.4(forward)ATAAGGGCTACCTCAAACTC
|
(SEQ ID NO: 3281)
919.5(forward)GCGCGTGGATTATTTTTGGG
|
(SEQ ID NO: 3282)
919.6(reverse)CAAATAAGAAAGGAATTTTG
or
|
(SEQ ID NO: 3283)
GGTATCGCAAAACTTCGCCTTAATGCG
|
(SEQ ID NO: 3284)
919.7(reverse)CCCAAGGTAATGTAGTGCCG
|
(SEQ ID NO: 3285)
919.8(reverse)TAAAAAAAAGTTCGACAGGG
|
(SEQ ID NO: 3286)
919.9(reverse)CCGTCCGCCTGTCGTCGCCC
|
(SEQ ID NO: 3287)
919.10(reverse)TCGTTCCGGCGGGGTCGGGG
All documents cited herein are incorporated by reference in their entireties.
The following Examples are presented to illustrate, not limit, the invention.
Example 1Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:
TABLE 1
|
Oligonucleotides used for PCR for Examples 2-10
ORFPrimerSequenceRestriction sites
|
279ForwardCGCGGATCCCATATG-TTGCCTGCAATCACGATTBamHI-NdeI
<SEQ ID 3021>
|
ReverseCCCGCTCGAG-TTTAGAAGCGGGCGGCAAXhoI
<SEQ ID 3022>
|
519ForwardCGCGGATCCCATATG-TTCAAATCCTTTGTCGTCABamHI-NdeI
<SEQ ID 3023>
|
ReverseCCCGCTCGAG-TTTGGCGGTTTTGCTGCXhoI
<SEQ ID 3024>
|
576ForwardCGCGGATCCCATATG-GCCGCCCCCGCATCTBamHI-NdeI
<SEQ ID 3025>
|
ReverseCCCGCTCGAG-ATTTACTTTTTTGATGTCGACXhoI
<SEQ ID 3026>
|
919ForwardCGCGGATCCCATATG-TGCCAAAGCAAGAGCATCBamHI-NdeI
<SEQ ID 3027>
|
ReverseCCCGCTCGAG-CGGGCGGTATTCGGGXhoI
<SEQ ID 3028>
|
121ForwardCGCGGATCCCATATG-GAAACACAGCTTTACATBamHI-NdeI
<SEQ ID 3029>
|
ReverseCCCGCTCGAG-ATAATAATATCCCGCGCCCXhoI
<SEQ ID 3030>
|
128ForwardCGCGGATCCCATATG-ACTGACAACGCACTBamHI-NdeI
<SEQ ID 3031>
|
ReverseCCCGCTCGAG-GACCGCGTTGTCGAAAXhoI
<SEQ ID 3032>
|
206ForwardCGCGGATCCCATATG-AAACACCGCCAACCGABamHI-NdeI
<SEQ ID 3033>
|
ReverseCCCGCTCGAG-TTCTGTAAAAAAAGTATGTGCXhoI
<SEQ ID 3034>
|
287ForwardCCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGGEcoRI-NheI
<SEQ ID 3035>
|
ReverseCCCGCTCGAG-ATCCTGCTCTTTTTTGCCXhoI
<SEQ ID 3036>
|
406ForwardCGCGGATCCCATATG-TGCGGGACACTGACAGBamHI-NdeI
<SEQ ID 3037>
|
ReverseCCCGCTCGAG-AGGTTGTCCTTGTCTATGXhoI
<SEQ ID 3038>
|
\nLocalization of the ORFs\n
The following DNA and amino acid sequences are identified by titles of the following form: [g, m, or a] [#].[seq or pep], where “g†means a sequence from N. gonorrhoeae, “m†means a sequence from N. meningitidis B, and “a†means a sequence from N. meningitidis A; “#†means the number of the sequence; “seq†means a DNA sequence, and “pep†means an amino acid sequence. For example, “g001.seq†refers to an N. gonorrhoeae DNA sequence, number 1. The presence of the suffix “−1†to these sequences indicates an additional sequence found for the same ORF, thus, data for an ORF having both an unsuffixed and a suffixed sequence designation applies to both such designated sequences. Further, open reading frames are identified as ORF #, where “#†means the number of the ORF, corresponding to the number of the sequence which encodes the ORF, and the ORF designations may be suffixed with “.ng†or “.a†, indicating that the ORF corresponds to a N. gonorrhoeae sequence or a N. meningitidis A sequence, respectively. The word “partial†before a sequence indicates that the sequence may be partial or a complete ORF. Computer analysis was performed for the comparisons that follow between “g†, “m†, and “a†peptide sequences; and therein the “pep†suffix is implied where not expressly stated. Further, in the event of a conflict between the text immediately preceding and describing which sequences are being compared, and the designated sequences being compared, the designated sequence controls and is the actual sequence being compared
ORF: contig:
279 gnm4.seq
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3039>:
m279.seq
  1ATAACGCGGA TTTGCGGCTG CTTGATTTCA ACGGTTTTCA GGGCTTCGGC
|
 51AAGTTTGTCG GCGGCGGGTT TCATCAGGCT GCAATGGGAA GGTACGGACA
|
101CGGGCAGCGG CAGGGCGCGT TTGGCACCGG CTTCTTTGGC GGCAGCCATG
|
151GCGCGTCCGA CGGCGGCGGC GTTGCCTGCA ATCACGATTT GTCCGGGTGA
|
201GTTGAAGTTG ACGGCTTCGA CCACTTCGCT TTGGGCGGCT TCGGCACAAA
|
251TGGCTTTAAC CTGCTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
|
301ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA GGCGCACGAG
|
351TTTGACCGCG TCGGCAAAAT TCAATGCGCC GGCGGCAACG AGTGCGGTGT
|
401ATTCGCCGAG GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
|
451TCTAAATAG
This corresponds to the amino acid sequence <SEQ ID 3040; ORF 279>:
m279.pep
  1ITRICGCLIS TVFRASASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
|
 51ARPTAAALPA ITICPGELKL TASTTSLWAA SAQMALTCSS SKPRIAAIAP
|
101TPCGTADCIS SARRRTSLTA SAKFNAPAAT SAVYSPRLCP ATAAGVLPPA
|
151SK*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3041>:
g279.seq
  1atgacgcgga tttgcggctg cttgatttca acggttttga gtgtttcggc
|
 51aagtttgtcg gcggcgggtt tcatcaggct gcaatgggaa ggaacggata
|
101ccggcagcgg cagggcgcgt ttggctccgg cttctttggc ggcagccatg
|
151gtgcgtccga cggcggcggc gttgcctgca atcacgactt gtccgggcga
|
201gttgaagttg acggcttcga ccacttcgcc ctgtgcggat tcggcacaaa
|
251tctgcctgac ctgttcatct tccaaaccca aaatggccgc cattgcgcct
|
301acgccttgcg gtacggcgga ctgcatcagt tcggcgcgca ggcggacgag
|
351tttgacggca tcggcaaaat ccaatgcttc ggcggcgaca agcgcggtgt
|
401attcgccgag gctgtgtccg gcaacggcgg caggcgtttt gccgcccact
|
451tccaaatag
This corresponds to the amino acid sequence <SEQ ID 3042; ORF 279.ng>:
g279.pep
  1MTRICGCLIS TVLSVSASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
|
 51VRPTAAALPA ITTCPGELKL TASTTSPCAD SAQICLTCSS SKPKMAAIAP
|
101TPCGTADCIS SARRRTSLTA SAKSNASAAT SAVYSPRLCP ATAAGVLPPT
|
151SK*
ORF 279 shows 89.5% identity over a 152 aa overlap with a predicted ORF (ORF 279.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3043>:
a279.seq
  1ATGACNCNGA TTTGCGGCTG CTTGATTTCA ACGGTTTNNA GGGCTTCGGC
|
 51GAGTTTGTCG GCGGCGGGTT TCATGAGGCT GCAATGGGAA GGTACNGACA
|
101CNGGCAGCGG CAGGGCGCGT TTGGCGCCGG CTTCTTTGGC GGCAAGCATA
|
151GCGCGCTCGA CGGCGGCGGC ATTGCCTGCA ATCACGACTT GTCCGGGCGA
|
201GTTGAAGTTG ACGGCTTCAA CCACTTCATC CTGTGCGGAT TCGGCGCAAA
|
251TTTGTTTTAC CTGTTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
|
301ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA NGCGCACGAG
|
351TTTGACCGCG TCGGCAAAAT CCAATGCGCC GGCGGCAACN AGTGCGGTGT
|
401ATTCGCCGAN GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
|
451TCCGAATAG
This corresponds to the amino acid sequence <SEQ ID 3044; ORF 279.a>:
a279.pep
  1MTXICGCLIS TVXRASASLS AAGFMRLQWE GTDTGSGRAR LAPASLAASI
|
 51ARSTAAALPA ITTCPGELKL TASTTSSCAD SAQICFTCSS SKPRIAAIAP
|
101TPCGTADCIS SARXRTSLTA SAKSNAPAAT SAVYSPXLCP ATAAGVLPPA
|
151SE*
\nm279/a279 ORFs 279 and 279.a showed a 88.2% identity in 152 aa overlap\n
![\"embedded]()
\n519 and 519-1 gnm7.seq\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3045>:
m519.seq (partial)
  1. . . TCCGTTATCG GGCGTATGGA GTTGGACAAA ACGTTTGAAG AACGCGACGA
|
 51      AATCAACAGT ACTGTTGTTG CGGCTTTGGA CGAGGCGGCC GGGgCTTgGG
|
101      GTGTGAAGGT TTTGCGTTAT GAGATTAAAG ACTTGGTTCC GCCGCAAGAA
|
151      ATCCTTCGCT CAATGCAGGC GCAAATTACT GCCGAACGCG AAAAACGCGC
|
201      CCGTATCGCC GAATCCGAAG GTCGTAAAAT CGAACAAATC AACCTTGCCA
|
251      GTGGTCAGCG CGAAGCCGAA ATCCAACAAT CCGAAGGCGA GGCTCAGGCT
|
301      GCGGTCAATG CGTCAAATGC CGAGAAAATC GCCCGCATCA ACCGCGCCAA
|
351      AGGTGAAGCG GAATCCTTGC GCCTTGTTGC CGAAGCCAAT GCCGAAGCCA
|
401      TCCGTCAAAT TGCCGCCGCC CTTCAAACCC AAGGCGGTGC GGATGCGGTC
|
451      AATCTGAAGA TTGCGGAACA ATACGTCGCT GCGTTCAACA ATCTTGCCAA
|
501      AGAAAGCAAT ACGCTGATTA TGCCCGCCAA TGTTGCCGAC ATCGGCAGCC
|
551      TGATTTCTGC CGGTATGAAA ATTATCGACA GCAGCAAAAC CGCCAAaTAA
This corresponds to the amino acid sequence <SEQ ID 3046; ORF 519>:
m519.pep (partial)
  1. . . SVIGRMELDK TFEERDEINS TVVAALDEAA GAWGVKVLRY EIKDLVPPQE
|
 51      ILRSMQAQIT AEREKRARIA ESEGRKIEQI NLASGQREAE IQQSEGEAQA
|
101      AVNASNAEKI ARINRAKGEA ESLRLVAEAN AEAIRQIAAA LQTQGGADAV
|
151      NLKIAEQYVA AFNNLAKESN TLIMPANVAD IGSLISAGMK IIDSSKTAK*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3047>:
g519.seq
  1atggaatttt tcattatctt gttggcagcc gtcgccgttt tcggcttcaa
|
 51atcctttgtc gtcatccccc agcaggaagt ccacgttgtc gaaaggctcg
|
101ggcgtttcca tcgcgccctg acggccggtt tgaatatttt gattcccttt
|
151atcgaccgcg tcgcctaccg ccattcgctg aaagaaatcc ctttagacgt
|
201acccagccag gtctgcatca cgcgcgataa tacgcaattg actgttgacg
|
251gcatcatcta tttccaagta accgatccca aactcgcctc atacggttcg
|
301agcaactaca ttatggcaat tacccagctt gcccaaacga cgctgcgttc
|
351cgttatcggg cgtatggagt tggacaaaac gtttgaagaa cgcgacgaaa
|
401tcaacagtac cgtcgtctcc gccctcgatg aagccgccgg ggcttggggt
|
451gtgaaagtcc tccgttacga aatcaaggat ttggttccgc cgcaagaaat
|
501ccttcgcgca atgcaggcac aaattaccgc cgaacgcgaa aaacgcgccc
|
551gtattgccga atccgaaggc cgtaaaatcg aacaaatcaa ccttgccagt
|
601ggtcagcgtg aagccgaaat ccaacaatcc gaaggcgagg ctcaggctgc
|
651ggtcaatgcg tccaatgccg agaaaatcgc ccgcatcaac cgcgccaaag
|
701gcgaagcgga atccctgcgc cttgttgccg aagccaatgc cgaagccaac
|
751cgtcaaattg ccgccgccct tcaaacccaa agcggggcgg atgcggtcaa
|
801tctgaagatt gcgggacaat acgttaccgc gttcaaaaat cttgccaaag
|
851aagacaatac gcggattaag cccgccaagg ttgccgaaat cgggaaccct
|
901aattttcggc ggcatgaaaa attttcgcca gaagcaaaaa cggccaaata
|
951a
This corresponds to the amino acid sequence <SEQ ID 3048; ORF 519.ng>:
g519.pep
  1MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
|
 51IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
|
101SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
|
151VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
|
201GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAN
|
251RQIAAALQTQ SGADAVNLKI AGQYVTAFKN LAKEDNTRIK PAKVAEIGNP
|
301NFRRHEKFSP EAKTAK*
ORF 519 shows 87.5% identity over a 200 aa overlap with a predicted ORF (ORF 519.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3049>:
a519.seq
  1ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA
|
 51ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
|
101GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
|
151ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
|
201ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
|
251GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
|
301AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
|
351CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
|
401TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT
|
451GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
|
501CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC
|
551GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
|
601GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
|
651GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
|
701GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
|
751CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
|
801TCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG
|
851AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
|
901ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3050; ORF 519.a>:
![\"embedded]()
Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3051>:
m519-1.seq
  1ATGGAATTTT TCATTATCTT GTTGGTAGCC GTCGCCGTTT TCGGTTTCAA
|
 51ATCCTTTGTT GTCATCCCAC AACAGGAAGT CCACGTTGTC GAAAGGCTGG
|
101GGCGTTTCCA TCGCGCCCTG ACGGcCGGTT TGAATATTTT GATTCCCTTT
|
151ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
|
201ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
|
251GCATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
|
301AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
|
351CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
|
401TCAACAGTAC TGTTGTTGCG GCTTTGGACG AGGCGGCCGG GGCTTGGGGT
|
451GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
|
501CCTTCGCTCA ATGCAGGCGC AAATTACTGC CGAACGCGAA AAACGCGCCC
|
551GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
|
601GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
|
651GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
|
701GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
|
751CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
|
801TCTGAAGATT GCGGAACAAT ACGTCGCTGC GTTCAACAAT CTTGCCAAAG
|
851AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
|
901ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3052; ORF 519-1>:
m519-1.
  1MEFFIILLVA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
|
 51IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
|
101SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVA ALDEAAGAWG
|
151VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
|
201GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
|
251RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
|
301ISAGMKIIDS SKTAK*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3053>:
g519-1.seq
  1ATGGAATTTT TCATTATCTT GTTGGCAGCC GTCGCCGTTT TCGGCTTCAA
|
 51ATCCTTTGTC GTCATCCCCC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
|
101GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
|
151ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
|
201ACCCAGCCAG GTCTGCATCA CGCGCGATAA TACGCAATTG ACTGTTGACG
|
251GCATCATCTA TTTCCAAGTA ACCGATCCCA AACTCGCCTC ATACGGTTCG
|
301AGCAACTACA TTATGGCAAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
|
351CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
|
401TCAACAGTAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG GGCTTGGGGT
|
451GTGAAAGTCC TCCGTTACGA AATCAAGGAT TTGGTTCCGC CGCAAGAAAT
|
501CCTTCGCGCA ATGCAGGCAC AAATTACCGC CGAACGCGAA AAACGCGCCC
|
551GTATTGCCGA ATCCGAAGGC CGTAAAATCG AACAAATCAA CCTTGCCAGT
|
601GGTCAGCGTG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
|
651GGTCAATGCG TCCAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
|
701GCGAAGCGGA ATCCCTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
|
751CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGGGCGG ATGCGGTCAA
|
801TCTGAAGATT GCGGAACAAT ACGTAGCCGC GTTCAACAAT CTTGCCAAAG
|
851AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
|
901ATTTCTGCCG GCATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3054; ORF 519-1.ng>:
![\"embedded]()
The following DNA sequence was identified in N. meningitidis <SEQ ID 3055>:
a519-1.seq
  1ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA
|
 51ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
|
101GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
|
151ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
|
201ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
|
251GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
|
301AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
|
351CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
|
401TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT
|
451GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
|
501CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC
|
551GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
|
601GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
|
651GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
|
701GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
|
751CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
|
801TCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG
|
851AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
|
901ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3056; ORF 519-1.a>:
![\"embedded]()
\n576 and 576-1 gnm22.seq\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3057>:
m576.seq . . . (partial)
  1. . . ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
|
 51      GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
|
101      CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
|
151      GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
|
201      AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
|
251      TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
|
301      CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
|
351      CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
|
401      TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
|
451      GTGATTCCGG GTTGGACCGA AGgCGTACAG CTTCTGAAAG AAGGCGGCGA
|
501      AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
|
551      GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
|
601      AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
|
651      CATCAAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3058; ORF 576>:
m576.pep . . . (partial)
  1. . . MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
|
 51      AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
|
101      LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
|
151      VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
|
201      KIGAPENAPA KQPAQVDIKK VN*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3059>:
g576.seq . . . (partial)
  1. . . atgggcgtgg acatcggacg ctccctgaaa caaatgaagg aacagggcgc
|
 51      ggaaatcgat ttgaaagtct ttaccgatgc catgcaggca gtgtatgacg
|
101      gcaaagaaat caaaatgacc gaagagcagg cccaggaagt gatgatgaaa
|
151      ttcctgcagg agcagcaggc taaagccgta gaaaaacaca aggcggatgc
|
201      gaaggccaac aaagaaaaag gcgaagcctt cctgaaggaa aatgccgccg
|
251      aagacggcgt gaagaccact gcttccggtc tgcagtacaa aatcaccaaa
|
301      cagggtgaag gcaaacagcc gacaaaagac gacatcgtta ccgtggaata
|
351      cgaaggccgc ctgattgacg gtaccgtatt cgacagcagc aaagccaacg
|
401      gcggcccggc caccttccct ttgagccaag tgattccggg ttggaccgaa
|
451      ggcgtacggc ttctgaaaga aggcggcgaa gccacgttct acatcccgtc
|
501      caaccttgcc taccgcgaac agggtgcggg cgaaaaaatc ggtccgaacg
|
551      ccactttggt atttgacgtg aaactggtca aaatcggcgc acccgaaaac
|
601      gcgcccgcca agcagccgga tcaagtcgac atcaaaaaag taaattaa
This corresponds to the amino acid sequence <SEQ ID 3060; ORF 576.ng>:
g576.pep . . . (partial)
  1. . . MGVDIGRSLK QMKEQGAEID LKVFTDAMQA VYDGKEIKMT EEQAQEVMMK
|
 51      FLQEQQAKAV EKHKADAKAN KEKGEAFLKE NAAEDGVKTT ASGLQYKITK
|
101      QGEGKQPTKD DIVTVEYEGR LIDGTVFDSS KANGGPATFP LSQVIPGWTE
|
151      GVRLLKEGGE ATFYIPSNLA YREQGAGEKI GPNATLVFDV KLVKIGAPEN
|
201      APAKQPDQVD IKKVN*
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3061>:
a576.seq
  1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
|
 51ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
|
101CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
|
151ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
|
201GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
|
251CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
|
301GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
|
351AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
|
401TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
|
451CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
|
501CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
|
551TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
|
601GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
|
651AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
|
701GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
|
751AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
|
801CATCAAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3062; ORF 576.a>:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3063>:
m576-1.seq
  1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
|
 51ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
|
101CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
|
151ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
|
201GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
|
251CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
|
301GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
|
351AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
|
401TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
|
451CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
|
501CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
|
551TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
|
601GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
|
651AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
|
701GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
|
751AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
|
801CATCAAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3064; ORF 576-1>:
m576-1.pep.
  1MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
|
 51MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
|
101AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
|
151LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
|
201VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
|
251KIGAPENAPA KQPAQVDIKK VN*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3065>:
g576-1.seq
  1ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
|
 51ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
|
101CTGCCGCCGC TTCTGCCGCG CAGGGCGACA CCTCTTCAAT CGGCAGCACG
|
151ATGCAGCAGG CAAGCTATGC AATGGGCGTG GACATCGGAC GCTCCCTGAA
|
201ACAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGATG
|
251CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
|
301GCCCAGGAAG TGATGATGAA ATTCCTGCAG GAGCAGCAGG CTAAAGCCGT
|
351AGAAAAACAC AAGGCGGATG CGAAGGCCAA CAAAGAAAAA GGCGAAGCCT
|
401TCCTGAAGGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGT
|
451CTGCAGTACA AAATCACCAA ACAGGGTGAA GGCAAACAGC CGACAAAAGA
|
501CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACCGTAT
|
551TCGACAGCAG CAAAGCCAAC GGCGGCCCGG CCACCTTCCC TTTGAGCCAA
|
601GTGATTCCGG GTTGGACCGA AGGCGTACGG CTTCTGAAAG AAGGCGGCGA
|
651AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
|
701GCGAAAAAAT CGGTCCGAAC GCCACTTTGG TATTTGACGT GAAACTGGTC
|
751AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG ATCAAGTCGA
|
801CATCAAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3066; ORF 576-1.ng>:
![\"embedded]()
The following DNA sequence was identified in N. meningitidis <SEQ ID 3067>:
a576-1.seq
1ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
|
51ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
|
101CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
|
151ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
|
201GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
|
251CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
|
301GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
|
351AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
|
401TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
|
451CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
|
501CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
|
551TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
|
601GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
|
651AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
|
701GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
|
751AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
|
801CATCAAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3068; ORF 576-1.a>:
![\"embedded]()
\n919 gnm43.seq\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3069>:
m919.seq
1ATGAAAAAAT ACCTATTCCG CGCCGCCCTG TACGGCATCG CCGCCGCCAT
|
51CCTCGCCGCC TGCCAAAGCA AGAGCATCCA AACCTTTCCG CAACCCGACA
|
101CATCCGTCAT CAACGGCCCG GACCGGCCGG TCGGCATCCC CGACCCCGCC
|
151GGAACGACGG TCGGCGGCGG CGGGGCCGTC TATACCGTTG TACCGCACCT
|
201GTCCCTGCCC CACTGGGCGG CGCAGGATTT CGCCAAAAGC CTGCAATCCT
|
251TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
|
301TGCGCCCAAG CCTTTCAAAC CCCCGTCCAT TCCTTTCAGG CAAAACAGTT
|
351TTTTGAACGC TATTTCACGC CGTGGCAGGT TGCAGGCAAC GGAAGCCTTG
|
401CCGGTACGGT TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGACAGG
|
451CGGACGGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
|
501CTCCGTCCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA
|
551TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA
|
601CATACCGCCG ACCTCTCCcG ATTCCCCATC ACCGCGCGCA CAACAGCAAT
|
651CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC
|
701AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC
|
751GAAGACCCTG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT
|
801GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG
|
851AACATCCyTA CGTTTCCATC GGACGCTATA TGGCGGATAA GGGCTACCTC
|
901AAACTCGGAC AAACCTCCAT GCAGGGCATT AAGTCTTATA TGCGGCAAAA
|
951TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
|
1001TCCGCGAGCT TGCCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC
|
1051ACGCCGCTGA TGGGGGAATA TGCCGGCGCA GTCGACCGGC ACTACATTAC
|
1101CTTGGGTGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
|
1151CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC
|
1201GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT
|
1251TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTC CTACCCAACG
|
1301GTATGAAGCC CGAATACCGc CCGTAA
This corresponds to the amino acid sequence <SEQ ID 3070; ORF 919>:
m919.pep
1MKKYLFRAAL YGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
|
51GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
|
101CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
|
151RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
|
201HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
|
251EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
|
301KLGQTSMQGI KSYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
|
351TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
|
401AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3071>:
g919.seq
1ATGAAAAAAC ACCTGCTCCG CTCCGCCCTG TACGGcatCG CCGCCgccAT
|
51CctcgCCGCC TGCCAAAgca gGAGCATCCA AACCTTTCCG CAACCCGACA
|
101CATCCGTCAT CAACGGCCCG GACCGGCCGG CCGGCATCCC CGACCCCGCC
|
151GGAACGACGG TTGCCGGCGG CGGGGCCGTC TATACCGTTG TGCCGCACCT
|
201GTCCATGCCC CACTGGGCGG CGCaggATTT TGCCAAAAGC CTGCAATCCT
|
251TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
|
301TGCGCCCAAG CCTTTCAAAC CCCCGTGCAT TCCTTTCAGG CAAAGcGgTT
|
351TTTTGAACGC TATTTCACGC cgtGGCaggt tgcaggcaAC GGAAGcCTTG
|
401Caggtacggt TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGGCAGG
|
451CGGACGGAAC GGGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
|
501CTCCGTCCCG CTGCCTGCCG GTTTGCGGGG CGGAAAAAAC CTTGTCCGCA
|
551TCAGGCAGac ggGGAAAAAC AGCGGCACGA TCGACAATGC CGGCGGCACG
|
601CATACCGCCG ACCTCTCCCG ATTCCCCATC ACCGCGCGCA CAACGGcaat
|
651caaaGGCAGG TTTGAaggAA GCCGCTTCCT CCCTTACCAC ACGCGCAACC
|
701AAAtcaacGG CGGCgcgcTT GACGGCAAag cccCCATCCT CggttacgcC
|
751GAagaccCcG tcgaacttTT TTTCATGCAC AtccaaggCT CGGGCCGCCT
|
801GAAAACCCcg tccggcaaat acatCCGCAt cggaTacgcc gacAAAAACG
|
851AACAtccgTa tgtttccatc ggACGctaTA TGGCGGACAA AGGCTACCTC
|
901AAGctcgggc agACCTCGAT GCAGGgcatc aaagcCTATA TGCGGCAAAA
|
951TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
|
1001TCCGCGAGCT TGCCGGAAGC GGCAATGAGG GCCCCGTCGG CGCACTGGGC
|
1051ACGCCACTGA TGGGGGAATA CGCCGGCGCA ATCGACCGGC ACTACATTAC
|
1101CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
|
1151CCCTCAACCG CCTGATTATG GCGCAGGATA CAGGCAGCGC GATCAAAGGC
|
1201GCGGTGCGCG TGGATTATTT TTGGGGTTAC GGCGACGAAG CCGGCGAACT
|
1251TGCCGGCAAA CAGAAAACCA CGGGATACGT CTGGCAGCTC CTGCCCAACG
|
1301GCATGAAGCC CGAATACCGC CCGTGA
This corresponds to the amino acid sequence <SEQ ID 3072; ORF 919.ng>:
g919.pep
1MKKHLLRSAL YGIAAAILAA CQSRSIQTFP QPDTSVINGP DRPAGIPDPA
|
51GTTVAGGGAV YTVVPHLSMP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
|
101CAQAFQTPVH SFQAKRFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDGR
|
151RTERARFPIY GIPDDFISVP LPAGLRGGKN LVRIRQTGKN SGTIDNAGGT
|
201HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
|
251EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
|
301KLGQTSMQGI KAYMRQNPQR LAEVLGQNPS YIFFRELAGS GNEGPVGALG
|
351TPLMGEYAGA IDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
|
401AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
ORF 919 shows 95.9% identity over a 441 aa overlap with a predicted ORF (ORF 919.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3073>:
a919.seq
1ATGAAAAAAT ACCTATTCCG CGCCGCCCTG TGCGGCATCG CCGCCGCCAT
|
51CCTCGCCGCC TGCCAAAGCA AGAGCATCCA AACCTTTCCG CAACCCGACA
|
101CATCCGTCAT CAACGGCCCG GACCGGCCGG TCGGCATCCC CGACCCCGCC
|
151GGAACGACGG TCGGCGGCGG CGGGGCCGTT TATACCGTTG TGCCGCACCT
|
201GTCCCTGCCC CACTGGGCGG CGCAGGATTT CGCCAAAAGC CTGCAATCCT
|
251TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
|
301TGCGCCCAAG CCTTTCAAAC CCCCGTCCAT TCCGTTCAGG CAAAACAGTT
|
351TTTTGAACGC TATTTCACGC CGTGGCAGGT TGCAGGCAAC GGAAGCCTTG
|
401CCGGTACGGT TACCGGCTAT TACGAGCCGG TGCTGAAGGG CGACGACAGG
|
451CGGACGGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
|
501CTCCGTCCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA
|
551TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA
|
601CATACCGCCG ACCTCTCCCA ATTCCCCATC ACTGCGCGCA CAACGGCAAT
|
651CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC
|
701AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC
|
751GAAGACCCCG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT
|
801GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG
|
851AACATCCCTA CGTTTCCATC GGACGCTATA TGGCGGACAA AGGCTACCTC
|
901AAGCTCGGGC AGACCTCGAT GCAGGGCATC AAAGCCTATA TGCAGCAAAA
|
951CCCGCAACGC CTCGCCGAAG TTTTGGGGCA AAACCCCAGC TATATCTTTT
|
1001TCCGAGAGCT TACCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC
|
1051ACGCCGCTGA TGGGCGAGTA CGCCGGCGCA GTCGACCGGC ACTACATTAC
|
1101CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
|
1151CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC
|
1201GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT
|
1251TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTT CTGCCCAACG
|
1301GTATGAAGCC CGAATACCGC CCGTAA
This corresponds to the amino acid sequence <SEQ ID 3074; ORF 919.a>:
a919.pep
1MKKYLFRAAL CGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
|
51GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
|
101CAQAFQTPVH SVQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
|
151RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
|
201HTADLSQFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
|
251EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
|
301KLGQTSMQGI KAYMQQNPQR LAEVLGQNPS YIFFRELTGS SNDGPVGALG
|
351TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
|
401AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
\nm919/a919 98.6% identity in 441 aa overlap\n
![\"embedded]()
\n121 and 121-1\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3075>:
m121.seq
1ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
|
51GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
|
101AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG
|
151GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC
|
201GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA
|
251GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
|
301ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT
|
351GCCGCTGCTG GCGxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
|
401xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
|
451xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
|
501xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
|
551xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
|
601xxxxxxCAGC TTCCTTACGA CAAAAACGGT GCAAAGTCGG CACAAGGCAA
|
651CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
|
701AACGCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCAT AAATTGGCTC
|
751GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
|
801TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG
|
851CAGATGCCCG TCAAATGTAC ATTTGCGACG GCGGCATCCG CAATCCTGTT
|
901TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
|
951CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGnATTTG
|
1001CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA
|
1051GCAACCGGCG CATCCAAACC GTGTATTCTG AnCGCGGGAT ATTATTATTG
|
1101A
This corresponds to the amino acid sequence <SEQ ID 3076; ORF 121>:
m121.pep
1METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL
|
51DLQDTGADEL HRSRILSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
|
101TVRHAPEHGY SIQLADLPLL Axxxxxxxxx xxxxxxxxxx xxxxxxxxxx
|
151xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
|
201xxQLPYDKNG AKSAQGNILP QLLDRLLAHP YFAQRHPKST GRELFAINWL
|
251ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICDGGIRNPV
|
301LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK
|
351ATGASKPCIL XAGYYY*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3077>:
g121.seq
1ATGGAAACAC AGCTTTACAT CGGCATTATG TCGGGAACCA GTATGGACGG
|
51GGCGGATGCC GTGCTGGTAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
|
101AAGGGCACGC CTTTACCCCC TACCCTGACC GGTTGCGCCG CAAATTGCTG
|
151GATTTGCAGG ACACAGGCAC AGACGAACTG CACCGCAGCA GGATGTTGTC
|
201GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
|
251GTCAAAACCT CGCTCCGTGC GACATTACCG CCCTCGGCTG CCACGGGCAA
|
301ACCGTCCGAC ACGCGCCGGA ACACGGTtac AGCATACAGC TTGCCGATTT
|
351GCCGCTGCTG GCGGAACTGa cgcggatttT TACCGTCggc gacttcCGCA
|
401GCCGCGACCT TGCTGCCGGC GGacaAGGTG CGCCGCTCGT CCCCGCCTTT
|
451CACGAAGCCC TGTTCCGCGA TGACAGGGAA ACACGCGTGG TACTGAACAT
|
501CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGGCGCA CCCGCCTTCG
|
551GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGAcgcgtg gacgcaggca
|
601cacTGGcagc TGCCTTACGA CAAAAacggt gcAAAGgcgg cacAAGGCAA
|
651catatTGCcg cAACTGCTCG gcaggctGCT CGCCcaccCG TATTTCTCAC
|
701AACCCcaccc aaAAAGCACG GGgcGCGaac TgtttgcccT AAattggctc
|
751gaaacctAcc ttgacggcgg cgaaaaccga tacgacgtat tgcggacgct
|
801ttcccgattc accgcgcaaA ccgTttggga cgccgtctca CACGCAGCGG
|
851CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
|
901TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
|
951CACCGCCGAA CTGAACCTCG ATCCTCAATG GGTGGAGGCG gccgCATTtg
|
1001cgtggttggC GGCGTGTTGG ATTAACCGCA TTCCCGGTAG TCCGCACAAA
|
1051GCGACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
|
1101A
This corresponds to the amino acid sequence <SEQ ID 3078; ORF 121.ng>:
g121.pep
1METQLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL
|
51DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ
|
101TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF
|
151HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA
|
201HWQLPYDKNG AKAAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL
|
251ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV
|
301LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK
|
351ATGASKPCIL GAGYYY*
ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3079>:
a121.seq
1ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
|
51GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
|
101AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
|
151GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
|
201GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
|
251GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
|
301ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
|
351GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
|
401GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
|
451CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
|
501CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
|
551GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
|
601CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
|
651CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
|
701AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
|
751GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
|
801TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
|
851CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
|
901TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
|
951CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
|
1001CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
|
1051GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
|
1101A
This corresponds to the amino acid sequence <SEQ ID 3080; ORF 121.a>:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3081>:
m121-1.seq
1ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
|
51GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
|
101AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG
|
151GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC
|
201GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA
|
251GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
|
301ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT
|
351GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA
|
401GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT
|
451CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT
|
501CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
|
551GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA
|
601CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
|
651CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
|
701AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
|
751GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
|
801TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG
|
851CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
|
901TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
|
951CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGNATTTG
|
1001CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA
|
1051GCAACCGGCG CATCCAAACC GTGTATTCTG ANCGCGGGAT ATTATTATTG
|
1101A
This corresponds to the amino acid sequence <SEQ ID 3082; ORF 121-1>:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3083>:
a121-1.seq
1ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
|
51GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
|
101AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
|
151GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
|
201GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
|
251GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
|
301ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
|
351GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
|
401GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
|
451CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
|
501CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
|
551GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
|
601CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
|
651CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
|
701AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
|
751GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
|
801TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
|
851CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
|
901TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
|
951CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
|
1001CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
|
1051GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
|
1101A
This corresponds to the amino acid sequence <SEQ ID 3084; ORF 121-1.a>:
![\"embedded]()
\n128 and 128-1\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3085>:
m128.seq (partial)
1ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
|
51AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
|
101CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
|
151AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
|
201GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
|
251CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
|
301GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
|
351CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
|
1TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
|
51wGTCAAAAAA TAyTTCCCyG TCGGCAAwGT ATTAAACGGA CTGTTCGCCC
|
101AAmTCAAAAA ACTmTACGGC ATCGGATTTA CCGAAAAAAC yGTCCCCGTC
|
151TGGCACAAAG ACGTGCGCTA TTkTGAATTG CAACAAAACG GCGAAmCCAT
|
201AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
|
251CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
|
301CAAyTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
|
351CAGGGAAGCC CGCyTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
|
401CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
|
451TCCGGCATCA ACGGCGTAkA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
|
501TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
|
551ACGAAGAAAC CGGcgTTCCC yTGCCGAAAG AACTCTTsGA CAAAwTGCTC
|
601GCCGCCAAAA ACTTCCAAsG CGGCATGTTC yTsGTCCGGC AAwTGGAGTT
|
651CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
|
701AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
|
751CAGCCGCCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
|
801AGGCGGCTAT TCCGCAGCTn ATTACAGCTA CGCGTGGGCG GAAGTATTGA
|
851GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
|
901GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGnAT CGCGCAGCGG
|
951nGCAGAATCC TTCAAAGCCT TCCGCGGCCG CGAACCGAGC ATAGACGCAC
|
1001TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
This corresponds to the amino acid sequence <SEQ ID 3086; ORF 128>:
m128.pep (partial)
1MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
|
51NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
|
101GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH
|
//
|
1YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
|
51WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
|
101QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
|
151SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
|
201AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
|
251QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
|
301GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3087>:
g128.seq
1atgattgaca acgCActgct ccacttgggc gaagaaccCC GTTTTaatca
|
51aatccaaacc gaagACAtca AACCCGCCGT CCAAACCGCC ATCGCCGAAG
|
101CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
|
151AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
|
201GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
|
251CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
|
301GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
|
351CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
|
401TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
|
451GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
|
501CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
|
551CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
|
601GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
|
651GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
|
701AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
|
751AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
|
801AACCGccaaa cTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
|
851CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
|
901GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
|
951CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
|
1001GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
|
1051GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
|
1101CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
|
1151TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
|
1201ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
|
1251CGCGTGGATG AACGACtaca AAGGCCGCCG CCGCTTTGCC GACGgcacGC
|
1301TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
|
1351GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
|
1401AacCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
|
1451TGTCCGGCAT CAAcggcgtA GAATGGGACG CGGTCGAACT GCCCAGCCAG
|
1501TTTATGGAAA ACTTCGTTTG GGAATACAAT GTATTGGCAC AAATGTCCGC
|
1551CCACGAAGAA AccgGCGAGC CCCTGCCGAA AGAACTCTTC GACAAAATGC
|
1601TcgcCGCCAA AAACTTCCAG CGCGGTATGT TCCTCGTCCG GCAAATGGAG
|
1651TTCGCCCTCT TCGATATGAT GATTTACAGT GAAAGCGACG AATGCCGTCT
|
1701GAAAAACTGG CAGCAGGTTT TAGACAGCGT GCGCAAAGAA GTcGCCGTCA
|
1751TCCAACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCacatctTC
|
1801GCcggcGGCT ATTCCGCAGG CTATTACAGC TACGCATGGG CCGAAGTCCt
|
1851cAGCACCGAT GCCTACGCCG CCTTTGAAGA AAGcGACGac gtcGCCGCCA
|
1901CAGGCAAACG CTTCTGGCAA GAAAtccttg ccgtcggcgg ctCCCGCAGC
|
1951gcgGCGGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
|
2001ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
This corresponds to the amino acid sequence <SEQ ID 3088; ORF 128.ng>:
g128.pep
1MIDNALLHLG EEPRFNQIQT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
|
51NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
|
101GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
|
151ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
|
201AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
|
251KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
|
301ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
|
351EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
|
401IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
|
451GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
|
501FMENFVWEYN VLAQMSAHEE TGEPLPKELF DKMLAAKNFQ RGMFLVRQME
|
551FALFDMMIYS ESDECRLKNW QQVLDSVRKE VAVIQPPEYN RFANSFGHIF
|
601AGGYSAGYYS YAWAEVLSTD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
|
651AAESFKAFRG REPSIDALLR QSGFDNAA*
ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3089>:
a128.seq
1ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
|
51AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
|
101CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
|
151AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
|
201GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
|
251CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
|
301GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
|
351CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
|
401TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
|
451GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
|
501CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
|
551CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
|
601GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
|
651GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
|
701AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
|
751AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
|
801AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
|
851CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
|
901GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
|
951CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
|
1001GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
|
1051GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
|
1101CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
|
1151TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
|
1201ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
|
1251CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
|
1301TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC
|
1351GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
|
1401AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
|
1451TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
|
1501TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
|
1551CCACGAAGAA ACCGGCGTTC CCATGACGAA AGAACTCTTC GACAAAATGC
|
1601TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
|
1651TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
|
1701GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
|
1751TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
|
1801GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
|
1851GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
|
1901CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
|
1951GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
|
2001ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
This corresponds to the amino acid sequence <SEQ ID 3090; ORF 128.a>:
a128.pep
1MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
|
51NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
|
101GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
|
151ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
|
201AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
|
251KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
|
301ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
|
351EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
|
401IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
|
451GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
|
501FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
|
551FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
|
601AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
|
651AAESFKAFRG REPSIDALLR HSGFDNAA*
\nm128/a128 66.0% identity in 677 aa overlap\n
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3091>:
m128-1.seq
1ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
|
51AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
|
101CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
|
151AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
|
201GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG
|
251CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
|
301GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
|
351CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC
|
401TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
|
451GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
|
501CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
|
551CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
|
601GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC
|
651ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC
|
701AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC
|
751AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA
|
801AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
|
851CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
|
901GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
|
951CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG
|
1001GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC
|
1051GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
|
1101CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
|
1151TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
|
1201ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
|
1251CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
|
1301TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC
|
1351GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA
|
1401AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
|
1451TATCCGGCAT CAACGGCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG
|
1501TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC
|
1551CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
|
1601TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG
|
1651TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
|
1701GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA
|
1751TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC
|
1801GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
|
1851GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
|
1901CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
|
1951GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC
|
2001ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA
This corresponds to the amino acid sequence <SEQ ID 3092; ORF 128-1>:
m128-1.pep.
1MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
|
51NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI
|
101GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
|
151ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
|
201AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
|
251KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
|
301ARRAKPYAEK DLAEVKAFAR ESLNLADLQP WDLGYASEKL REAKYAFSET
|
351EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
|
401IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
|
451GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
|
501FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
|
551FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
|
601AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
|
651AAESFKAFRG REPSIDALLR HSGFDNAV*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3093>:
g128-1.seq (partial)
1ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
|
51AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
|
101CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
|
151AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
|
201GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
|
251CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
|
301GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
|
351CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
|
401TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
|
451GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
|
501CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
|
551CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
|
601GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
|
651GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
|
701AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
|
751AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
|
801AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
|
851CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
|
901GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
|
951CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
|
1001GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
|
1051GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
|
1101CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
|
1151TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
|
1201ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
|
1251CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
|
1301TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
|
1351GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
|
1401AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
|
1451TGTCCGGCAT CAACGGCGTA AAA
This corresponds to the amino acid sequence <SEQ ID 3094; ORF 128-1.ng>:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3095>:
a128-1.seq
1ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
|
51AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
|
101CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
|
151AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
|
201GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
|
251CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
|
301GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
|
351CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
|
401TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
|
451GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
|
501CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
|
551CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
|
601GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
|
651GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
|
701AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
|
751AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
|
801AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
|
851CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
|
901GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
|
951CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
|
1001GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
|
1051GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
|
1101CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
|
1151TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
|
1201ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
|
1251CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
|
1301TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC
|
1351GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
|
1401AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
|
1451TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
|
1501TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
|
1551CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
|
1601TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
|
1651TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
|
1701GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
|
1751TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
|
1801GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
|
1851GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
|
1901CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
|
1951GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
|
2001ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
This corresponds to the amino acid sequence <SEQ ID 3096; ORF 128-1.a>:
a128-1.pep
1MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
|
51NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
|
101GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
|
151ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
|
201AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
|
251KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
|
301ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
|
351EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
|
401IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
|
451GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
|
501FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
|
551FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
|
601AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
|
651AAESFKAFRG REPSIDALLR HSGFDNAA*
\nm128-1/a128-1 97.8% identity in 677 aa overlap\n
![\"embedded]()
\n206\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3097>:
m206.seq
1ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
|
51CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
|
101AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
|
151CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
|
201CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
|
251TGATTCAATT CGTTTACAAr AACGCCCTCA ACGTCAAGCT GCCGCGCACC
|
301GCCCGCGACA TGGCGGCGGC AAGCCGsAAA ATCCCCGAcA GCCGCyTCAA
|
351GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
|
401ACGTCGGACT CTACATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
|
451GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
|
501CTACCTCGGC GCACATACTT TTTTTACAGA ATGA
This corresponds to the amino acid sequence <SEQ ID 3098; ORF 206>:
m206.pep . . .
1MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQI QAVRISHIDRT
|
51QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVY KNALNVKLPRT
|
101ARDMAAASRK IPDSRXKAGD LVFFNTGGAH RYSHVGLYI GNGEFIHAPSS
|
151GKTIKTEKLS TPFYAKNYLG AHTFFTE*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3099>:
g206.seq.
1atgttttccc ccgacaaaac ccttttcctc tgtctcggcg cactgctcct
|
51cgcctcatgc ggcacgacct ccggcaaaca ccgccaaccg aaacccaaac
|
101agacagtccg gcaaatccaa gccgtccgca tcagccacat cggccgcaca
|
151caaggctcgc aggaactcat gctccacagc ctcggactca tcggcacgcc
|
201ctacaaatgg ggcggcagca gcaccgcaac cggcttcgac tgcagcggca
|
251tgattcaatt ggtttacaaa aacgccctca acgtcaagct gccgcgcacc
|
301gcccgcgaca tggcggcggc aagccgcaaa atccccgaca gccgcctcaa
|
351ggccggcgac atcgtattct tcaacaccgg cggcgcacac cgctactcac
|
401acgtcggact ctacatcggc aacggcgaat tcatccatgc ccccggcagc
|
451ggcaaaacca tcaaaaccga aaaactctcc acaccgtttt acgccaaaaa
|
501ctaccttgga gcgcatacgt tttttacaga atga
This corresponds to the amino acid sequence <SEQ ID 3100; ORF 206.ng>:
g206.pep
1MFSPDKTLFL CLGALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIGRT
|
51QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQLVYK NALNVKLPRT
|
101ARDMAAASRK IPDSRLKAGD IVFFNTGGAH RYSHVGLYIG NGEFIHAPGS
|
151GKTIKTEKLS TPFYAKNYLG AHTFFTE*
ORF 206 shows 96.0% identity over a 177 aa overlap with a predicted ORF (ORF 206.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3101>:
a206.seq
1ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
|
51CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
|
101AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
|
151CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
|
201CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
|
251TGATTCAATT CGTTTACAAA AACGCCCTCA ACGTCAAGCT GCCGCGCACC
|
301GCCCGCGACA TGGCGGCGGC AAGCCGCAAA ATCCCCGACA GCCGCCTTAA
|
351GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
|
401ACGTCGGACT CTATATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
|
451GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
|
501CTACCTCGGC GCACATACTT TCTTTACAGA ATGA
This corresponds to the amino acid sequence <SEQ ID 3102; ORF 206.a>:
a206.pep
1MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT
|
51QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
|
101ARDMAAASRK IPDSRLKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
|
151GKTIKTEKLS TPFYAKNYLG AHTFFTE*
\nm206/a206 99.4% identity in 177 aa overlap\n
![\"embedded]()
\n287\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3103>:
m287.seq
1ATGTTTAAAC GCAGCGTAAT CGCAATGGCT TGTATTTTTG CCCTTTCAGC
|
51CTGCGGGGGC GGCGGTGGCG GATCGCCCGA TGTCAAGTCG GCGGACACGC
|
101TGTCAAAACC TGCCGCCCCT GTTGTTTCTG AAAAAGAGAC AGAGGCAAAG
|
151GAAGATGCGC CACAGGCAGG TTCTCAAGGA CAGGGCGCGC CATCCGCACA
|
201AGGCAGTCAA GATATGGCGG CGGTTTCGGA AGAAAATACA GGCAATGGCG
|
251GTGCGGTAAC AGCGGATAAT CCCAAAAATG AAGACGAGGT GGCACAAAAT
|
301GATATGCCGC AAAATGCCGC CGGTACAGAT AGTTCGACAC CGAATCACAC
|
351CCCGGATCCG AATATGCTTG CCGGAAATAT GGAAAATCAA GCAACGGATG
|
401CCGGGGAATC GTCTCAGCCG GCAAACCAAC CGGATATGGC AAATGCGGCG
|
451GACGGAATGC AGGGGGACGA TCCGTCGGCA GGCGGGCAAA ATGCCGGCAA
|
501TACGGCTGCC CAAGGTGCAA ATCAAGCCGG AAACAATCAA GCCGCCGGTT
|
551CTTCAGATCC CATCCCCGCG TCAAACCCTG CACCTGCGAA TGGCGGTAGC
|
601AATTTTGGAA GGGTTGATTT GGCTAATGGC GTTTTGATTG ACGGGCCGTC
|
651GCAAAATATA ACGTTGACCC ACTGTAAAGG CGATTCTTGT AGTGGCAATA
|
701ATTTCTTGGA TGAAGAAGTA CAGCTAAAAT CAGAATTTGA AAAATTAAGT
|
751GATGCAGACA AAATAAGTAA TTACAAGAAA GATGGGAAGA ATGATAAATT
|
801TGTCGGTTTG GTTGCCGATA GTGTGCAGAT GAAGGGAATC AATCAATATA
|
851TTATCTTTTA TAAACCTAAA CCCACTTCAT TTGCGCGATT TAGGCGTTCT
|
901GCACGGTCGA GGCGGTCGCT TCCGGCCGAG ATGCCGCTGA TTCCCGTCAA
|
951TCAGGCGGAT ACGCTGATTG TCGATGGGGA AGCGGTCAGC CTGACGGGGC
|
1001ATTCCGGCAA TATCTTCGCG CCCGAAGGGA ATTACCGGTA TCTGACTTAC
|
1051GGGGCGGAAA AATTGCCCGG CGGATCGTAT GCCCTTCGTG TTCAAGGCGA
|
1101ACCGGCAAAA GGCGAAATGC TTGCGGGCGC GGCCGTGTAC AACGGCGAAG
|
1151TACTGCATTT CCATACGGAA AACGGCCGTC CGTACCCGAC CAGGGGCAGG
|
1201TTTGCCGCAA AAGTCGATTT CGGCAGCAAA TCTGTGGACG GCATTATCGA
|
1251CAGCGGCGAT GATTTGCATA TGGGTACGCA AAAATTCAAA GCCGCCATCG
|
1301ATGGAAACGG CTTTAAGGGG ACTTGGACGG AAAATGGCAG CGGGGATGTT
|
1351TCCGGAAAGT TTTACGGCCC GGCCGGCGAG GAAGTGGCGG GAAAATACAG
|
1401CTATCGCCCG ACAGATGCGG AAAAGGGCGG ATTCGGCGTG TTTGCCGGCA
|
1451AAAAAGAGCA GGATTGA
This corresponds to the amino acid sequence <SEQ ID 3104; ORF 287>:
m287.pep
1MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP VVSEKETEAK
|
51EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN PKNEDEVAQN
|
101DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP ANQPDMANAA
|
151DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA SNPAPANGGS
|
201NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV QLKSEFEKLS
|
251DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK PTSFARFRRS
|
301ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA PEGNYRYLTY
|
351GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE NGRPYPTRGR
|
401FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG TWTENGSGDV
|
451SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3105>:
g287.seq
1atgtttaaac gcagtgtgat tgcaatggct tgtatttttc ccctttcagc
|
51ctgtgggggc ggcggtggcg gatcgcccga tgtcaagtcg gcggacacgc
|
101cgtcaaaacc ggccgccccc gttgttgctg aaaatgccgg ggaaggggtg
|
151ctgccgaaag aaaagaaaga tgaggaggca gcgggcggtg cgccgcaagc
|
201cgatacgcag gacgcaaccg ccggagaagg cagccaagat atggcggcag
|
251tttcggcaga aaatacaggc aatggcggtg cggcaacaac ggacaacccc
|
301aaaaatgaag acgcgggggc gcaaaatgat atgccgcaaa atgccgccga
|
351atccgcaaat caaacaggga acaaccaacc cgccggttct tcagattccg
|
401cccccgcgtc aaaccctgcc cctgcgaatg gcggtagcga ttttggaagg
|
451acgaacgtgg gcaattctgt tgtgattgac ggaccgtcgc aaaatataac
|
501gttgacccac tgtaaaggcg attcttgtaa tggtgataat ttattggatg
|
551aagaagcacc gtcaaaatca gaatttgaaa aattaagtga tgaagaaaaa
|
601attaagcgat ataaaaaaga cgagcaacgg gagaattttg tcggtttggt
|
651tgctgacagg gtaaaaaagg atggaactaa caaatatatc atcttctata
|
701cggacaaacc acctactcgt tctgcacggt cgaggaggtc gcttccggcc
|
751gagattccgc tgattcccgt caatcaggcc gatacgctga ttgtggatgg
|
801ggaagcggtc agcctgacgg ggcattccgg caatatcttc gcgcccgaag
|
851ggaattaccg gtatctgact tacggggcgg aaaaattgcc cggcggatcg
|
901tatgccctcc gtgtgcaagg cgaaccggca aaaggcgaaa tgcttgttgg
|
951cacggccgtg tacaacggcg aagtgctgca tttccatatg gaaaacggcc
|
1001gtccgtaccc gtccggaggc aggtttgccg caaaagtcga tttcggcagc
|
1051aaatctgtgg acggcattat cgacagcggc gatgatttgc atatgggtac
|
1101gcaaaaattc aaagccgcca tcgatggaaa cggctttaag gggacttgga
|
1151cggaaaatgg cggcggggat gtttccggaa ggttttacgg cccggccggc
|
1201gaggaagtgg cgggaaaata cagctatcgc ccgacagatg ctgaaaaggg
|
1251cggattcggc gtgtttgccg gcaaaaaaga tcgggattga
This corresponds to the amino acid sequence <SEQ ID 3106; ORF 287.ng>:
g287.pep.
1MFKRSVIAMA CIFPLSACGG GGGGSPDVKS ADTPSKPAAP VVAENAGEGV
|
51LPKEKKDEEA AGGAPQADTQ DATAGEGSQD MAAVSAENTG NGGAATTDNP
|
101KNEDAGAQND MPQNAAESAN QTGNNQPAGS SDSAPASNPA PANGGSDFGR
|
151TNVGNSVVID GPSQNITLTH CKGDSCNGDN LLDEEAPSKS EFEKLSDEEK
|
201IKRYKKDEQR ENFVGLVADR VKKDGTNKYI IFYTDKPPTR SARSRRSLPA
|
251EIPLIPVNQA DTLIVDGEAV SLTGHSGNIF APEGNYRYLT YGAEKLPGGS
|
301YALRVQGEPA KGEMLVGTAV YNGEVLHFHM ENGRPYPSGG RFAAKVDFGS
|
351KSVDGIIDSG DDLHMGTQKF KAAIDGNGFK GTWTENGGGD VSGRFYGPAG
|
401EEVAGKYSYR PTDAEKGGFG VFAGKKDRD* 
\nm287/g287 70.1% identity in 499 aa overlap\n
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3107>:
a287.seq
1ATGTTTAAAC GCAGTGTGAT TGCAATGGCT TGTATTGTTG CCCTTTCAGC
|
51CTGTGGGGGC GGCGGTGGCG GATCGCCCGA TGTTAAGTCG GCGGACACGC
|
101TGTCAAAACC TGCCGCCCCT GTTGTTACTG AAGATGTCGG GGAAGAGGTG
|
151CTGCCGAAAG AAAAGAAAGA TGAGGAGGCG GTGAGTGGTG CGCCGCAAGC
|
201CGATACGCAG GACGCAACCG CCGGAAAAGG CGGTCAAGAT ATGGCGGCAG
|
251TTTCGGCAGA AAATACAGGC AATGGCGGTG CGGCAACAAC GGATAATCCC
|
301GAAAATAAAG ACGAGGGACC GCAAAATGAT ATGCCGCAAA ATGCCGCCGA
|
351TACAGATAGT TCGACACCGA ATCACACCCC TGCACCGAAT ATGCCAACCA
|
401GAGATATGGG AAACCAAGCA CCGGATGCCG GGGAATCGGC ACAACCGGCA
|
451AACCAACCGG ATATGGCAAA TGCGGCGGAC GGAATGCAGG GGGACGATCC
|
501GTCGGCAGGG GAAAATGCCG GCAATACGGC AGATCAAGCT GCAAATCAAG
|
551CTGAAAACAA TCAAGTCGGC GGCTCTCAAA ATCCTGCCTC TTCAACCAAT
|
601CCTAACGCCA CGAATGGCGG CAGCGATTTT GGAAGGATAA ATGTAGCTAA
|
651TGGCATCAAG CTTGACAGCG GTTCGGAAAA TGTAACGTTG ACACATTGTA
|
701AAGACAAAGT ATGCGATAGA GATTTCTTAG ATGAAGAAGC ACCACCAAAA
|
751TCAGAATTTG AAAAATTAAG TGATGAAGAA AAAATTAATA AATATAAAAA
|
801AGACGAGCAA CGAGAGAATT TTGTCGGTTT GGTTGCTGAC AGGGTAGAAA
|
851AGAATGGAAC TAACAAATAT GTCATCATTT ATAAAGACAA GTCCGCTTCA
|
901TCTTCATCTG CGCGATTCAG GCGTTCTGCA CGGTCGAGGC GGTCGCTTCC
|
951GGCCGAGATG CCGCTGATTC CCGTCAATCA GGCGGATACG CTGATTGTCG
|
1001ATGGGGAAGC GGTCAGCCTG ACGGGGCATT CCGGCAATAT CTTCGCGCCC
|
1051GAAGGGAATT ACCGGTATCT GACTTACGGG GCGGAAAAAT TGTCCGGCGG
|
1101ATCGTATGCC CTCAGTGTGC AAGGCGAACC GGCAAAAGGC GAAATGCTTG
|
1151CGGGCACGGC CGTGTACAAC GGCGAAGTGC TGCATTTCCA TATGGAAAAC
|
1201GGCCGTCCGT CCCCGTCCGG AGGCAGGTTT GCCGCAAAAG TCGATTTCGG
|
1251CAGCAAATCT GTGGACGGCA TTATCGACAG CGGCGATGAT TTGCATATGG
|
1301GTACGCAAAA ATTCAAAGCC GTTATCGATG GAAACGGCTT TAAGGGGACT
|
1351TGGACGGAAA ATGGCGGCGG GGATGTTTCC GGAAGGTTTT ACGGCCCGGC
|
1401CGGCGAAGAA GTGGCGGGAA AATACAGCTA TCGCCCGACA GATGCGGAAA
|
1451AGGGCGGATT CGGCGTGTTT GCCGGCAAAA AAGAGCAGGA TTGA
This corresponds to the amino acid sequence <SEQ ID 3108; ORF 287.a>:
![\"embedded]()
\n406\n
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3109>:
m406.seq
1ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
|
51CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGTAAACGCT
|
101TTGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
|
151GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
|
201CACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
|
251TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC CGTCCGTACC
|
301GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
|
351TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
|
401CTCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT
|
451ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG
|
501CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG
|
551GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
|
601ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
|
651TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
|
701GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
|
751GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
|
801AGGAATTAAA CCGACGGAAG GATTAATGGT CGATTTCTCC GATATCCGAC
|
851CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
|
901AGTCATGAGG GGTATGGATA CAGCGATGAA GTAGTGCGAC AACATAGACA
|
951AGGACAACCT TGA
This corresponds to the amino acid sequence <SEQ ID 3110; ORF 406>:
m406.pep
1MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
|
51DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
|
101DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
|
151IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
|
201IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
|
251AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG NSAPSVEADN
|
301SHEGYGYSDE VVRQHRQGQP *
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3111>:
g406.seq
1ATGCGGGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
|
51CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGCAAACGCT
|
101TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
|
151GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
|
201AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
|
251TTGATGCACT GATTCGCGGC GAATACATAA ACAGCCCTGC CGTCCGCACC
|
301GATTACACCT ATCCGCGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
|
351TTTGACGGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
|
401CGCGCACCCA ATCAGACGGT AGCGGAAGTA GGAGCAGTCT GGGCTTAAAT
|
451ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CCAACCCGCG
|
501CGACACTGCC TTTCTTTCCC ACTTGGTGCA GACCGTATTT TTCCTGCGCG
|
551GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
|
601ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
|
651TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
|
701GAACCAATAA AAAATTGCTC ATCAAACCCA AAACCAATGC GTTTGAAGCT
|
751GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
|
801AGGAATCAAA CCGACGGAAG GATTGATGGT CGATTTCTCC CGATATCCAA
|
851CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
|
901AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC AACATAGACA
|
951AGGGCAACCT TGA
This corresponds to the amino acid sequence <SEQ ID 3112; ORF 406>:
g406.pep
  1MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
|
 51DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
|
101DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSRSSLGLN
|
151IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
|
201IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
|
251AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG NSAPSVEADN
|
301SHEGYGYSDE AVRQHRQGQP *
ORF 406 shows 98.8% identity over a 320 aa overlap with a predicted ORF (ORF406.a) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3113>:
a406.seq.
  1ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
|
 51CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGTAAACGCT
|
101TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
|
151GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
|
201AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
|
251TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC CGTCCGTACC
|
301GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
|
351TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
|
401CGCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT
|
451ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG
|
501CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG
|
551GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACGGATGT GTTTATTAAC
|
601ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
|
651TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
|
701GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
|
751GCCTATAAAG AAAATTACGC ATTGTGGATG GGACCGTATA AAGTAAGCAA
|
801AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTTCTCC GATATCCAAC
|
851CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA GGCTGATAAC
|
901AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC GACATAGACA
|
951AGGGCAACCT TGA
This corresponds to the amino acid sequence <SEQ ID 3114; ORF 406.a>:
![\"embedded]()
Example 2Expression of ORF 919The primer described in Table 1 for ORF 919 was used to locate and clone ORF 919. The predicted gene 919 was cloned in pET vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 919-His fusion protein purification. Mice were immunized with the purified 919-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; PP, purified protein, TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 919 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 919 are provided in FIG. 10. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol. 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 919 and the amino acid sequence encoded thereby is provided in Example 1.
Example 3Expression of ORF 279The primer described in Table 1 for ORF 279 was used to locate and clone ORF 279. The predicted gene 279 was cloned in pGex vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 279-GST purification. Mice were immunized with the purified 279-GST and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 279 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 279 are provided in FIG. 11. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 279 and the amino acid sequence encoded thereby is provided in Example 1.
Example 4Expression of ORF 576 and 576-1The primer described in Table 1 for ORF 576 was used to locate and clone ORF 576. The predicted gene 576 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 576-GST fusion protein purification. Mice were immunized with the purified 576-GST and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that ORF 576 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 576 are provided in FIG. 12. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 576 and the amino acid sequence encoded thereby is provided in Example 1.
Example 5Expression of ORF 519 and 519-1The primer described in Table 1 for ORF 519 was used to locate and clone ORF 519. The predicted gene 519 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 519-His fusion protein purification. Mice were immunized with the purified 519-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 519 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in FIG. 13. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand Immunol Suppl 11:9). The nucleic acid sequence of ORF 519 and the amino acid sequence encoded thereby is provided in Example 1.
Example 6Expression of ORF 121 and 121-1The primer described in Table 1 for ORF 121 was used to locate and clone ORF 121. The predicted gene 121 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 121-His fusion protein purification. Mice were immunized with the purified 121-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 121 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 121 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 121 are provided in FIG. 14. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 121 and the amino acid sequence encoded thereby is provided in Example 1.
Example 7Expression of ORF 128 and 128-1The primer described in Table 1 for ORF 128 was used to locate and clone ORF 128. The predicted gene 128 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 128-His purification. Mice were immunized with the purified 128-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D) and ELISA assay (panel E). Results show that 128 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 128 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 128 are provided in FIG. 15. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 128 and the amino acid sequence encoded thereby is provided in Example 1.
Example 8Expression of ORF 206The primer described in Table 1 for ORF 206 was used to locate and clone ORF 206. The predicted gene 206 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 206-His purification. Mice were immunized with the purified 206-His and sera were used for Western blot analysis (panel B). It is worthnoting that the immunoreactive band in protein extracts from meningococcus is 38 kDa instead of 17 kDa (panel A). To gain information on the nature of this antibody staining we expressed ORF 206 in E. coli without the His-tag and including the predicted leader peptide. Western blot analysis on total protein extracts from E. coli expressing this native form of the 206 protein showed a reactive band at a position of 38 kDa, as observed in meningococcus. We conclude that the 38 kDa band in panel B) is specific and that anti-206 antibodies, likely recognize a multimeric protein complex. In panel C is shown the FACS analysis, in panel D the bactericidal assay, and in panel E) the ELISA assay. Results show that 206 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 206 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in FIG. 16. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 206 and the amino acid sequence encoded thereby is provided in Example 1.
Example 9Expression of ORF 287The primer described in Table 1 for ORF 287 was used to locate and clone ORF 287. The predicted gene 287 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 287-GST fusion protein purification. Mice were immunized with the purified 287-GST and sera were used for FACS analysis (panel B), bactericidal assay (panel C), and ELISA assay (panel D). Results show that 287 is a surface-exposed protein. Symbols: M1, molecular weight marker. Arrow indicates the position of the main recombinant protein product (A). These experiments confirm that 287 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 287 are provided in FIG. 17. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 287 and the amino acid sequence encoded thereby is provided in Example 1.
Example 10Expression of ORF 406The primer described in Table 1 for ORF 406 was used to locate and clone ORF 406. The predicted gene 406 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 406-His fusion protein purification. Mice were immunized with the purified 406-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 406 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 406 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 406 are provided in FIG. 18. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 406 and the amino acid sequence encoded thereby is provided in Example 1.
Example 11Table 2 lists several Neisseria strains which were used to assess the conservation of the sequence of ORF 225 among different strains.
TABLE 2
|
225 gene variability: List of used Neisseria strains
Identification
Strains numberSource/reference
|
Group B
zo01_225 NG6/88R. Moxon/Seiler et al., 1996
zo02_225 BZ198R. Moxon/Seiler et al., 1996
zo03_225 NG3/88R. Moxon/Seiler et al., 1996
zo04_225 297-0R. Moxon/Seiler et al., 1996
zo05_225 1000R. Moxon/Seiler et al., 1996
zo06_225 BZ147R. Moxon/Seiler et al., 1996
zo07_225 BZ169R. Moxon/Seiler et al., 1996
zo08_225 528R. Moxon/Seiler et al., 1996
zo09_225 NGP165R. Moxon/Seiler et al., 1996
zo10_225 BZ133R. Moxon/Seiler et al., 1996
zo11_225 NGE31R. Moxon/Seiler et al., 1996
zo12_225 NGF26R. Moxon/Seiler et al., 1996
zo13_225 NGE28R. Moxon/Seiler et al., 1996
zo14_225 NGH38R. Moxon/Seiler et al., 1996
zo15_225 SWZ107R. Moxon/Seiler et al., 1996
zo16_225 NGH15R. Moxon/Seiler et al., 1996
zo17_225 NGH36R. Moxon/Seiler et al., 1996
zo18_225 BZ232R. Moxon/Seiler et al., 1996
zo19_225 BZ83R. Moxon/Seiler et al., 1996
zo20_225 44/76R. Moxon/Seiler et al., 1996
zo21_225 MC58R. Moxon
zo96_225 2996Our collection
Group A
zo22_225 205900R. Moxon
zo23_225 F6124R. Moxon
z2491 Z2491R. Moxon/Maiden et al., 1998
Group C
zo24_225 90/18311R. Moxon
zo25_225 93/4286R. Moxon
Others
zo26_225 A22 (group W)R. Moxon/Maiden et al., 1998
zo27_225 E26 (group X)R. Moxon/Maiden et al., 1998
zo28_225 860800 (group Y)R. Moxon/Maiden et al., 1998
zo29_225 E32 (group Z)R. Moxon/Maiden et al., 1998
Gonococcus
zo32_225 Ng F62R. Moxon/Maiden et al., 1998
zo33_225 Ng SN4R. Moxon
fa1090 FA1090R. Moxon
|
References:
Seiler A. et al., Mol. Microbiol., 1996, 19(4): 841-856.
Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95: 3140-3145.
The amino acid sequences for each listed strain are as follows:
>FA1090
<SEQ ID 3115>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS
|
GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN
|
RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*
|
Z2491
<SEQ ID 3116>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRVPARRAGNA
|
DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSISTGFDCSGF
|
MQHIFKRAMGINLPRISAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF
|
IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*
|
ZO01_225
<SEQ ID 3117>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO02_225
<SEQ ID 3118>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO03_225
<SEQ ID 3119>
MDSFFKPAVWAVLWLMFAVRLALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO04_225
<SEQ ID 3120>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO05_225
<SEQ ID 3121>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO06_225
<SEQ ID 3122>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO07_225
<SEQ ID 3123>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO08_225
<SEQ ID 3124>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO09_225
<SEQ ID 3125>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO10_225
<SEQ ID 3126>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO11_225
<SEQ ID 3127>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF
|
MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF
|
IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*
|
ZO12_225
<SEQ ID 3128>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO13_225
<SEQ ID 3129>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFIQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO14_225
<SEQ ID 3130>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO15_225
<SEQ ID 3131>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCS
|
GFMQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN
|
RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*
|
ZO16_225
<SEQ ID 3132>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO17_225
<SEQ ID 3133>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO18_225
<SEQ ID 3134>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO19_225
<SEQ ID 3135>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO20_225
<SEQ ID 3136>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPINRAPARRAGNADELIGSAMGLNEQPVLPVNRVPARRAGNA
|
DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF
|
MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF
|
IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*
|
ZO21_225
<SEQ ID 3137>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO22_225
<SEQ ID 3138>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO23_225
<SEQ ID 3139>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO24_225
<SEQ ID 3140>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO25_225
<SEQ ID 3141>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO26_225
<SEQ ID 3142>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO27_225
<SEQ ID 3143>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO28_225
<SEQ ID 3144>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO29_225
<SEQ ID 3145>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
|
ZO32_225
<SEQ ID 3146>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS
|
GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN
|
RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*
|
ZO33_225
<SEQ ID 3147>
MDSFFKPAVWAVLWLMFAVRSALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS
|
GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN
|
RFIHAPRTGKNIEITSLSHKYWSGKYAFARRIKKNDPSRFLN*
|
ZO96_225
<SEQ ID 3148>
MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG
|
NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA
|
DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR
|
SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR
|
VKKNDPSRFLN*
FIG. 19 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.
Example 12Table 3 lists several Neisseria strains which were used to assess the conservation of the sequence of ORF 235 among different strains.
TABLE 3
|
235 gene variability: List of used Neisseria strains
Identification
Strains numberReference
|
Group B
gnmzq01 NG6/88Seiler et al., 1996
gnmzq02 BZ198Seiler et al., 1996
gnmzq03 NG3/88Seiler et al., 1996
gnmzq04 1000Seiler et al., 1996
gnmzq05 1000Seiler et al., 1996
gnmzq07 BZ169Seiler et al., 1996
gnmzq08 528Seiler et al., 1996
gnmzq09 NGP165Seiler et al., 1996
gnmzq10 BZ133Seiler et al., 1996
gnmzq11 NGE31Seiler et al., 1996
gnmzq13 NGE28Seiler et al., 1996
gnmzq14 NGH38Seiler et al., 1996
gnmzq15 SWZ107Seiler et al., 1996
gnmzq16 NGH15Seiler et al., 1996
gnmzq17 NGH36Seiler et al., 1996
gnmzq18 BZ232Seiler et al., 1996
gnmzq19 BZ83Seiler et al., 1996
gnmzq21 MC58Virji et al., 1992
Group A
gnmzq22 205900Our collection
gnmzq23 F6124Our collection
z2491 Z2491Maiden et al., 1998
Group C
gnmzq24 90/18311Our collection
gnmzq25 93/4286Our collection
Others
gnmzq26 A22 (group W)Maiden et al., 1998
gnmzq27 E26 (group X)Maiden et al., 1998
gnmzq28 860800 (group Y)Maiden et al., 1998
gnmzq29 E32 (group Z)Maiden et al., 1998
gnmzq31 N. lactamicaOur collection
Gonococcus
gnmzq32 Ng F62Maiden et al., 1998
gnmzq33 Ng SN4Our collection
fa1090 FA1090Dempsey et al. 1991
|
References:
Seiler A. et al., Mol. Microbiol., 1996, 19(4): 841-856.
Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95: 3140-3145.
Virji M. et al., Mol. Microbiol., 1992, 6: 1271-1279
Dempsey J. F. et al., J. Bacteriol., 1991, 173: 5476-5486
The amino acid sequences for each listed strain are as follows:
FA1090
<SEQ ID 3149>
MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST
|
AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*
|
GNMZQ01
<SEQ ID 3150>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ02
<SEQ ID 3151>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ03
<SEQ ID 3152>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ04
<SEQ ID 3153>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ05
<SEQ ID 3154>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ07
<SEQ ID 3155>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ08
<SEQ ID 3156>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ09
<SEQ ID 3157>
MKPLILGLAAALVLSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST
|
AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVQPEKLHQIFGNDAVLYITITEYGTS
|
YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ10
<SEQ ID 3158>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ11
<SEQ ID 3159>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ13
<SEQ ID 3160>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ14
<SEQ ID 3161>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ15
<SEQ ID 3162>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ16
<SEQ ID 3163>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ17
<SEQ ID 3164>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ18
<SEQ ID 3165>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ19
<SEQ ID 3166>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ21
<SEQ ID 3166>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ22
<SEQ ID 3167>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ23
<SEQ ID 3168>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ24
<SEQ ID 3169>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ25
<SEQ ID 3170>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ26
<SEQ ID 3171>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ27
<SEQ ID 3172>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ28
<SEQ ID 3173>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ29
<SEQ ID 3174>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ31
<SEQ ID 3175>
MKPLILGLAAVLALSACQVQKAPDFDYTAFKESKPASILVVPPLNESPDVNGTWGMLAST
|
AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITITEYGTS
|
YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT
|
DRGYQVSKAAAYDLLSPYSHNGILKGPRFVEEQPK*
|
GNMZQ32
<SEQ ID 3176>
MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST
|
AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*
|
GNMZQ33
<SEQ ID 3177>
MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST
|
AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*
|
Z2491
<SEQ ID 3178>
MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST
|
AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS
|
YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT
|
DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*
FIG. 20 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 235, further confirming its utility as an antigen for both vaccines and diagnostics.
Example 13Table 4 lists several Neisseria strains which were used to assess the conservation of the sequence of ORF 287 among different strains.
TABLE 4
|
287 gene variability: List of used Neisseria strains
Identification
Strains numberReference
|
Group B
287_2 BZ198Seiler et al., 1996
287_9 NGP165Seiler et al., 1996
287_14 NGH38Seiler et al., 1996
287_21 MC58Virji et al., 1992
Group A
z2491 Z2491Maiden et al., 1998
Gonococcus
fa1090 FA1090Dempsey et al. 1991
|
References:
Seiler A. et al., Mol. Microbiol., 1996, 19(4): 841-856.
Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95: 3140-3145.
Virji M. et al., Mol. Microbiol., 1992, 6: 1271-1279
Dempsey J. F. et al., J. Bacteriol., 1991, 173: 5476-5486
The amino acid sequences for each listed strain are as follows:
287_14
<SEQ ID 3179>
MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG
|
QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS
|
NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ
|
TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV
|
QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR
|
FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP
|
GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII
|
DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG
|
GFGVFAGKKEQD*
|
287_2
<SEQ ID 3180>
MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG
|
QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS
|
NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ
|
TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV
|
QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR
|
FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP
|
GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII
|
DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG
|
GFGVFAGKKEQD*
|
287_21.
<SEQ ID 3181>
MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG
|
QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP
|
NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ
|
AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV
|
QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS
|
ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY
|
ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD
|
DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV
|
FAGKKEQD*
|
287_9
<SEQ ID 3182>
MFKRSVIAMACIVALSACGGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA
|
VSGAPQADTQDATAGKGGQDMAAVSAENTGNGGAATTDNPENKDEGPQNDMPQNAADTDS
|
STPNHTPAPNMPTRDMGNQAPDAGESAQPANQPDMANAADGMQGDDPSAGENAGNTADQA
|
ANQAENNQVGGSQNPASSTNPNATNGGSDFGRINVANGIKLDSGSENVTLTHCKDKVCDR
|
DFLDEEAPPKSEFEKLSDEEKINKYKKDEQRENFVGLVADRVEKNGTNKYVIIYKDKSAS
|
SSSARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYG
|
AEKLSGGSYALSVQGEPAKGEMLAGTAVYNGEVLHFHMENGRPSPSGGRFAAKVDFGSKS
|
VDGIIDSGDDLHMGTQKFKAVIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPT
|
DAEKGGFGVFAGKKEQD*
|
FA1090
<SEQ ID 3183>
MFKRSVIAMACIFPLSACGGGGGGSPDVKSADTPSKPAAPVVAENAGEGVLPKEKKDEEA
|
AGGAPQADTQDATAGEGSQDMAAVSAENTGNGGAATTDNPKNEDAGAQNDMPQNAAESAN
|
QTGNNQPAGSSDSAPASNPAPANGGSDFGRTNVGNSVVIDGPSQNITLTHCKGDSCNGDN
|
LLDEEAPSKSEFEKLSDEEKIKRYKKDEQRENFVGLVADRVKKDGTNKYIIFYTDKPPTR
|
SARSRRSLPAEIPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGS
|
YALRVQGEPAKGEMLVGTAVYNGEVLHFHMENGRPYPSGGRFAAKVDFGSKSVDGIIDSG
|
DDLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPTDAEKGGFG
|
VFAGKKDRD*
|
Z2491
<SEQ ID 3184>
MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG
|
QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP
|
NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ
|
AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV
|
QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS
|
ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY
|
ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD
|
DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV
|
FAGKKEQD*
FIG. 21 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.
Example 14Table 5 lists several Neisseria strains which were used to assess the conservation of the sequence of ORF 519 among different strains.
TABLE 5
|
519 gene variability: List of used Neisseria strains
Identification
Strains numberSource/reference
|
Group B
zv01_519 NG6/88R. Moxon/Seiler et al., 1996
zv02_519 BZ198R. Moxon/Seiler et al., 1996
zv03_519ass NG3/88R. Moxon/Seiler et al., 1996
zv04_519 297-0R. Moxon/Seiler et al., 1996
zv05_519 1000R. Moxon/Seiler et al., 1996
zv06_519ass BZ147R. Moxon/Seiler et al., 1996
zv07_519 BZ169R. Moxon/Seiler et al., 1996
zv11_519 NGE31R. Moxon/Seiler et al., 1996
zv12_519 NGF26R. Moxon/Seiler et al., 1996
zv18_519 BZ232R. Moxon/Seiler et al., 1996
zv19_519 BZ83R. Moxon/Seiler et al., 1996
zv20_519ass 44/76R. Moxon/Seiler et al., 1996
zv21_519ass MC58R. Moxon
zv96_519 2996Our collection
Group A
zv22_519ass 205900R. Moxon
z2491_519 Z2491R. Moxon/Maiden et al., 1998
Others
zv26_519 A22 (group W)R. Moxon/Maiden et al., 1998
zv27_519 E26 (group X)R. Moxon/Maiden et al., 1998
zv28_519 860800 (group Y)R. Moxon/Maiden et al., 1998
zv29_519ass E32 (group Z)R. Moxon/Maiden et al., 1998
Gonococcus
zv32_519 Ng F62R. Moxon/Maiden et al., 1998
fa1090_519 FA1090R. Moxon
|
References:
Seiler A. et al., Mol. Microbiol., 1996, 19(4): 841-856.
Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95: 3140-3145.
The amino acid sequences for each listed strain are as follows:
FA1090_519
<SEQ ID 3185>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
Z2491_519
<SEQ ID 3186>
MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV01_519
<SEQ ID 3187>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV02_519
<SEQ ID 3188>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV03_519
<SEQ ID 3189>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV04_519
<SEQ ID 3190>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV05_519
<SEQ ID 3191>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV06_519ASS
<SEQ ID 3192>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVFSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERK
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV07_519
<SEQ ID 3193>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV11_519
<SEQ ID 3194>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV12_519
<SEQ ID 3195>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV18_519
<SEQ ID 3196>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV19_519
<SEQ ID 3197>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV20_519ASS
<SEQ ID 3198>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSM
|
ISAGMKIIDSSKTAK*
|
ZV21_519ASS
<SEQ ID 3199>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV22_519ASS
<SEQ ID 3200>
MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAKIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV26_519
<SEQ ID 3201>
MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV27_519
<SEQ ID 3202>
MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV28_519
<SEQ ID 3203>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV29_519ASS
<SEQ ID 3204>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSIVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREPEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSNKTAK*
|
ZV32_519
<SEQ ID 3205>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
|
ZV96_519
<SEQ ID 3206>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
|
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
|
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
|
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
|
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
|
ISAGMKIIDSSKTAK*
FIG. 22 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.
Example 15Table 6 lists several Neisseria strains which were used to assess the conservation of the sequence of ORF 919 among different strains.
TABLE 6
|
919 gene variability: List of used Neisseria strains
Identification
Strains numberSource/reference
|
Group B
zm01 NG6/88R. Moxon/Seiler et al., 1996
zm02 BZ198R. Moxon/Seiler et al., 1996
zm03 NG3/88R. Moxon/Seiler et al., 1996
zm04 297-0R. Moxon/Seiler et al., 1996
zm05 1000R. Moxon/Seiler et al., 1996
zm06 BZ147R. Moxon/Seiler et al., 1996
zm07 BZ169R. Moxon/Seiler et al., 1996
zm08n 528R. Moxon/Seiler et al., 1996
zm09 NGP165R. Moxon/Seiler et al., 1996
zm10 BZ133R. Moxon/Seiler et al., 1996
zm11asbc NGE31R. Moxon/Seiler et al., 1996
zm12 NGF26R. Moxon/Seiler et al., 1996
zm13 NGE28R. Moxon/Seiler et al., 1996
zm14 NGH38R. Moxon/Seiler et al., 1996
zm15 SWZ107R. Moxon/Seiler et al., 1996
zm16 NGH15R. Moxon/Seiler et al., 1996
zm17 NGH36R. Moxon/Seiler et al., 1996
zm18 BZ232R. Moxon/Seiler et al., 1996
zm19 BZ83R. Moxon/Seiler et al., 1996
zm20 44/76R. Moxon/Seiler et al., 1996
zm21 MC58R. Moxon
zm96 2996Our collection
Group A
zm22 205900R. Moxon
zm23asbc F6124R. Moxon
z2491 Z2491R. Moxon/Maiden et al., 1998
Group C
zm24 90/18311R. Moxon
zm25 93/4286R. Moxon
Others
zm26 A22 (group W)R. Moxon/Maiden et al., 1998
zm27bc E26 (group X)R. Moxon/Maiden et al., 1998
zm28 860800 (group Y)R. Moxon/Maiden et al., 1998
zm29asbc E32 (group Z)R. Moxon/Maiden et al., 1998
zm31asbc N. lactamicaR. Moxon
Gonococcus
zm32asbc Ng F62R. Moxon/Maiden et al., 1998
zm33asbc Ng SN4R. Moxon
fa1090 FA1090R. Moxon
|
References:
Seiler A. et al., Mol. Microbiol., 1996, 19(4): 841-856.
Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95: 3140-3145.
The amino acid sequences for each listed strain are as follows:
FA1090
<SEQ ID 3207>
MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
|
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA
|
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
Z2491
<SEQ ID 3208>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM01
<SEQ ID 3209>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM02
<SEQ ID 3210>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM03
<SEQ ID 3211>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM04
<SEQ ID 3212>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM05
<SEQ ID 3213>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLSCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM06
<SEQ ID 3214>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM07
<SEQ ID 3215>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM08N
<SEQ ID 3216>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM09
<SEQ ID 3217>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM10
<SEQ ID 3218>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM11ASBC
<SEQ ID 3219>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM12
<SEQ ID 3220>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM13
<SEQ ID 3221>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAEQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM14
<SEQ ID 3222>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSRNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM15
<SEQ ID 3223>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDLAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNHQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM16
<SEQ ID 3224>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPGRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM17
<SEQ ID 3225>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM18
<SEQ ID 3226>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM19
<SEQ ID 3227>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM20
<SEQ ID 3228>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM21
<SEQ ID 3229>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM22
<SEQ ID 3230>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM23ASBC
<SEQ ID 3231>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTSKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK
|
MKEPGYVWQLLPNGMKPEYRP*
|
ZM24
<SEQ ID 3232>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM25
<SEQ ID 3233>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM26
<SEQ ID 3234>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM27BC
<SEQ ID 3235>
MKKYLFRAALYGISAAILAACQSKSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK
|
MKEPGYVWQLLPNGMKPEYRP*
|
ZM28
<SEQ ID 3236>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM29ASBC
<SEQ ID 3237>
MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATTHPITRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM31ASBC
<SEQ ID 3238>
MKKHLFRAALYGIAAAILAACQSKSIQTFPQPDTSIIKGPDRPAGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYVFFRELAGSGNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM32ASBC
<SEQ ID 3239>
MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
|
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKA
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGGDGPVGALGTPLMGGYAGA
|
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM33ASBC
<SEQ ID 3240>
MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
|
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPIHSFQAKRFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN
|
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKSYMRQNPHKLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA
|
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
|
ZM96
<SEQ ID 3241>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
|
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
|
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
|
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
|
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
|
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
|
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
|
QKTTGYVWQLLPNGMKPEYRP*
FIG. 23 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.
Example 16Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:
TABLE 7
|
Oligonucleotides used for PCR to amplify complete or partial ORFs
SEQRestriction
ORFIDprimerSequencesites
|
0013300ForwardCGCGGATCCCATATG-TGGATGGTGCTGGTCATBamHI-
NdeI
3301ReverseCCCGCTCGAG-TGCCGTCTTGTCCCACXhoI
0033302ForwardCGCGGATCCCATATG-GTCGTATTCGTGGCBamHI-
NdeI
3303ReverseCCCGCTCGAG-AAAATCATGAACACGCGCXhoI
0053304ForwardCGCGGATCCCATATG-GACAATATTGACATGTBamHI-
NdeI
3305ReverseCCCGCTCGAG-CATCACATCCGCCCGXhoI
0063306ForwardCGCGGATCCCATATG-CTGCTGGTGCTGGBamHI-
NdeI
3307ReverseCCCGCTCGAG-AGTTCCGGCTTTGATGTXhoI
0073308ForwardCGCGGATCCCATATG-GCCGACAACAGCATCATBamHI-
NdeI
3309ReverseCCCGCTCGAG-AAGGCGTTCATGATATAAGXhoI
0083310ForwardCGCGGATCCCATATG-AACAACAGACATTTTGBamHI-
NdeI
3311ReverseCCCGCTCGAG-CCTGTCCGGTAAAAGACXhoI
0093312ForwardCGCGGATCCCATATG-CCCCGCGCTGCTBamHI-
NdeI
3313ReverseCCCGCTCGAG-TGGCTTTTGCCACGTTTTXhoI
0113314ForwardCGCGGATCCCATATG-AAGACACACCGCAAGBamHI-
NdeI
3315ReverseCCCGCTCGAG-GGCGGTCAGTACGGTXhoI
0123316ForwardCGCGGATCCCATATG-CTCGCCCGTTGCCBamHI-
NdeI
3317ReverseCCCGCTCGAG-AGCGGGGAAGAGGCACXhoI
0133318ForwardCGCGGATCCCATATG-CCTTTGACCATGCTBamHI-
NdeI
3319ReverseCCCGCTCGAG-CTGATTCGGCAAAAAAATCTXhoI
0183320ForwardCGCGGATCCCATATG-CAGCAGAGGCAGTTBamHI-
NdeI
3321ReverseCCCGCTCGAG-GACGAGGCGAACGCCXhoI
0193322ForwardAAAGAATTC-CTGCCAGCCGGCAAGACCCCGGCEco RI
3323ReverseAAACTGCAG-TCAGCGGGCGGGGACAATGCCCATPst I
0233324ForwardAAAGAATTC-AAAGAATATTCGGCATGGCAGGCEco RI
3325ReverseAAACTGCAG-TTACCCCCAAATCACTTTAACTGAPst I
0253326ForwardAAAGAATTC-TGCGCCACCCAACAGCCTGCTCCEco RI
3327ReverseAAACTGCAG-TCAGAACGCGATATAGCTGTTCGGPst I
0313328ForwardCGCGGATCCCATATG-GTCTCCCTTCGCTTBamHI-
NdeI
3329ReverseCCCGCTCGAG-ATGTAAGACGGGGACAACXhoI
0323330ForwardCGCGGATCCCATATG-CGGCGAAACGTGCBamHI-
NdeI
3331ReverseCCCGCTCGAG-CTGGTTTTTTGATATTTGTGXhoI
0333332ForwardCGCGGATCCCATATG-GCGGCGGCAGACABamHI-
NdeI
3333ReverseCCCGCTCGAG-ATTTGCCGCATCCCGATXhoI
0343334ForwardCGCGGATCCCATATG-GCCGAAAACAGCTACGGBamHI-
NdeI
3335ReverseCCCGCTCGAG-TTTGACGATTTGGTTCAATTXhoI
0363336ForwardCGCGGATCCCATATG-CTGAAGCCGTGCGBamHI-
NdeI
3337ReverseCCCGCTCGAG-CCGGACTGCGTATCGGXhoI
0383338ForwardCGCGGATCCCATATG-ACCGATTTCCGCCABamHI-
NdeI
3339ReverseCCCGCTCGAG-TTCTACGCCGTACTGCCXhoI
0393340ForwardCGCGGATCCCATATG-CCGTCCGAACCGCBamHI-
NdeI
3341ReverseCCCGCTCGAG-TAGGATGACGAGGTAGGXhoI
0413342ForwardCGCGGATCCCATATG-TTCGTGCGCGAACCGCBamHI-
NdeI
3343ReverseCCCGCTCGAG-GCCCAAAAACTCTTTCAAAXhoI
0423344ForwardCGCGGATCCCATATG-ACGATGATTTGCTTGCBamHI-
NdeI
3345ReverseCCCGCTCGAG-TTTGCAGCCTGCATTTGACXhoI
0433346ForwardAAAAAAGGTACC-ATGGTTGTTTCAAATCAAAATATCKpn I
3347ReverseAAACTGCAG-TTATTGCGCTTCACCTTCCGCCGCPst I
043a3348ForwardAAAAAAGGTACC-GCAAAAGTGCATGGCGGCTTGGACGGTGCKpn I
3349ReverseAAAAAACTGCAG-Pst I
TTAATCCTGCAACACGAATTCGCCCGTCCG
0443350ForwardCGCGGATCCCATATG-CCGTCCGACTAGAGBamHI-
NdeI
3351ReverseCCCGCTCGAG-ATGCGCTACGGTAGCCAXhoI
0463352ForwardAAAGAATTC-ATGTCGGCAATGCTCCCGACAAGEco RI
3353ReverseAAACTGCAG-TCACTCGGCGACCCACACCGTGAAPst I
0473354ForwardCGCGGATCCCATATG-GTCATCATACAGGCGBamHI-
NdeI
3355ReverseCCCGCTCGAG-TCCGAAAAAGCCCATTTTGXhoI
0483356ForwardAAAGAATTC-ATGCTCAACAAAGGCGAAGAATTGCCEco RI
3357ReverseAAACTGCAG-TCAAGATTCGACGGGGATGATGCCPst I
0493358ForwardAAAGAATTC-ATGCGGGCGCAGGCGTTTGATCAGCCEco RI
3359ReverseAAACTGCAG-AAGGCGTATCTGAAAAAATGGCAGPst I
0503360ForwardCGCGGATCCCATATG-GGCGCGGGCTGGBamHI-
NdeI
3361ReverseCCCGCTCGAG-AATCGGGCCATCTTCGAXhoI
0523362ForwardAAAAAAGAATTC-ATGGCTTTGGTGGCGGAGGAAACEco RI
3363ReverseAAAAAAGTCGAC-TCAGGCGGCGTTTTTCACCTTCCTSal I
052a3364ForwardAAAAAAGAATTC-GTGGCGGAGGAAACGGAAATATCCGCEco RI
3365ReverseAAAAAACTGCAG-TTAGCTGTTTTTGGAAACGCCGTCCAACCCPst I
0733366ForwardCGCGGATCCCATATG-TGTATGCCATATAAGATBamHI-
NdeI
3367ReverseCCCGCTCGAG-CACCGGATTGTCCGACXhoI
0753368ForwardCGCGGATCCCATATG-CCGTCTTACTTCATCBamHI-
NdeI
3369ReverseCCCGCTCGAG-ATCACCAATGCCGATTATTTXhoI
077a3370ForwardAAAAAAGAATTC-GGCGGCATTTTCATCGACACCTTCCTEco RI
3371ReverseAAAAAACTGCAG-TCAGACGAACATCTGCACAAACGCAATPst I
0803372ForwardAAAGAATTC-GCGTCCGGGCTGGTTTGGTTTTACAATTCEco RI
3373ReverseAAACTGCAG-CTATTCTTCGGATTCTTTTTCGGGPst I
0813374ForwardAAAGAATTC-ATGAAACCACTGGACCTAAATTTCATCTGEco RI
3375ReverseAAACTGCAG-TCACTTATCCTCCAATGCCTCPst I
0823376ForwardAAAGAATTC-ATGTGGTTGTTGAAGTTGCCTGCEco RI
3377ReverseAAACTGCAG-TTACGCGGATTCGGCAGTTGGPst I
0843378ForwardAAAGAATTC-TATCACCCAGAATATGAATACGGCTACCGEco RI
3379ReverseAAACTGCAG-TTATACTTGGGCGCAACATGAPst I
0853380ForwardCGCGGATCCCATATG-GGTAAAGGGCAGGACTBamHI-
NdeI
3381ReverseCCCGCTCGAG-CAAAGCCTTAAACGCTTCGXhoI
0863382ForwardAAAAAAGGTACC-TATTTGGCATCAAAAGAAGGCGGKpn I
3383ReverseAAACTGCAG-TTACTCCACCCGATAACCGCGPst I
0873384ForwardAAAGAATTC-ATGGGCGGTAAAACCTTTATGCEco RI
3385ReverseAAACTGCAG-TTACGCCGCACACGCAATCGCPst I
087a3386ForwardAAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCAEco RI
3387ReverseAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCCPst I
0883388ForwardAAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAGEco RI
3389ReverseAAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACCPst I
0893390ForwardCGCGGATCCCATATG-CCGCCCAAAATCACBamHI-
NdeI
3391ReverseCCCGCTCGAG-TGCGCATACCAAAGCCAXhoI
0903392ForwardCGCGGATCCCATATG-CGCATAGTCGAGCABamHI-
NdeI
3393ReverseCCCGCTCGAG-AGCAAAACGGCGGTACGXhoI
0913394ForwardAAAGAATTC-ATGGAAATACCCGTACCGCCGAGTCCEco RI
3395ReverseAAACTGCAG-TCAGCGCAGGGGGTAGCCCAAGCCPst I
0923396ForwardAAAGAATTC-ATGTTTTTTATTTCAATCCGEco RI
3397ReverseAAACTGCAG-TCAAATCTGTTTCGACAATGCPst I
0933398ForwardAAAGAATTC-ATGCAGAATTTTGGCAAAGTGGCEco RI
3399ReverseAAACTGCAG-CTATGGCTCGTCATACCGGGCPst I
0943400ForwardAAAGAATTC-ATGCCGTCACGGAAGCGCATCAACTCEco RI
3401ReverseAAACTGCAG-TTATCCCGGCCATACCGCCGAACAPst I
0953402ForwardAAAGAATTC-ATGTCCTTTCATTTGAACATGGACGGEco RI
3403ReverseAAACTGCAG-TCAACGCCGCAGGCACTAACGCCCPst I
0963404ForwardAAAGAATTC-ATGGCTCGTCATACCGGGCAGGGEco RI
3405ReverseAAACTGCAG-TCAAAGGAAAAGGCCGTCTGAAAAGCGPst I
0973406ForwardAAAGAATTC-ATGGACACTTCAAAACAAACACTGTTGEco RI
3407ReverseAAACTGCAG-TCAGCCCAAATACCAGAATTTCAGPst I
0983408ForwardAAAGAATTC-GATGAACGCAGCCCAGCATGGATACGEco RI
3409ReverseAAACTGCAG-TTACGACATTCTGATTTGGCAPst I
1023410ForwardAAAAAAGAATTC-GGCCTGATGATTTTGGAAGTCAACACEco RI
3411ReverseAAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTCPst I
1053412ForwardCGCGGATCCCATATG-TCCGCAAACGAATACGBamHI-
NdeI
3413ReverseCCCGCTCGAG-GTGTTCTGCCAGTTTCAGXhoI
1073414ForwardAAAAAAGAATTC-Eco RI
CTGATGATTTTGGAAGTCAACACCCATTATCC
3415ReverseAAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTCPst I
107b3416ForwardAAAAAAGAATTC-Eco RI
GATACCCAAGCCCCCGCCGGCACAAACTACTG
3417ReverseAAAAAACTGCAG-Pst I
TTACGCGTCGCCTTTAAAGTATTTGAGCAGGCTGGAGAC
1083418ForwardAAAGAATTC-ATGTTGCCGGGCTTCAACCGEco RI
3419ReverseAAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCAPst I
108a3420ForwardAAAAAAGAATTC-GGTAACACATTCGGCAGCTTAGACGGTGGEco RI
3421ReverseAAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCAPst I
1093422ForwardAAAGAATTC-ATGTATTATCGCCGGGTTATGGGEco RI
3423ReverseAAACTGCAG-CTAGCCCAAAGATTTGAAGTGTTCPst I
1113424ForwardCGCGGATCCCATATG-TGTTCGGAACAAACCGCBamHI-
NdeI
3425ReverseCCCGCTCGAG-GCGGAGCAGTTTTTCAAAXhoI
1143426ForwardCGCGGATCCCATATG-GCTTCCATCACTTCGCBamHI-
NdeI
3427ReverseCCCGCTCGAG-CATCCGCGAAATCGTCXhoI
1173428ForwardAAAAAAGGTACC-ATGGTCGAAGAACTGGAACTGCTGKpn I
3429ReverseAAACTGCAG-TTAAAGCCGGGTAACGCTCAATACPst I
1183430ForwardAAAGTCGACATGTGTGAGTTCAAGGATATTATAAGSal I
3431ReverseAAAGCATGC-CTATTTTTTGTTGTAATAATCAAATCSph I
1213432ForwardCGCGGATCCCATATG-GAAACACAGCTTTACATBamHI-
NdeI
3433ReverseCCCGCTCGAG-ATAATAATATCCCGCGCCCXhoI
1223434ForwardCGCGGATCCCATATG-GTCATGATTAAAATCCGCABamHI-
NdeI
3435ReverseCCCGCTCGAG-AATCTTGGTAGATTGGATTTXhoI
1253436ForwardAAAGAATTC-ATGTCGGGCAATGCCTCCTCTCCEco RI
3437ReverseAAACTGCAG-TCACGCCGTTTCAAGACGPst I
125a3438ForwardAAAAAAGAATTC-ACGGCAGGCAGCACCGCCGCACAGGTTTCEco RI
3439ReverseAAAAAACTGCAG-Pst I
TTATTTTGCCACGTCGGTTTCTCCGGTGAACAACGC
1263440ForwardCGCGGATCCCATATG-CCGTCTGAAACCCBamHI-
NdeI
3441ReverseCCCGCTCGAG-ATATTCCGCCGAATGCCXhoI
1273442ForwardAAAGAATTC-ATGGAAATATGGAATATGTTGGACACTTGEco RI
3443ReverseAAACTGCAG-TTAAAGTGTTTCGGAGCCGGCPst I
127a3444ForwardAAAAAAGAATTC-AAGGAACTGATTATGTGTCTGTCGGGEco RI
3445ReverseAAACTGCAG-TTAAAGTGTTTCGGAGCCGGCPst I
1283446ForwardCGCGGATCCCATATG-ACTGACAACGCACTBamHI-
NdeI
3447ReverseCCCGCTCGAG-GACCGCGTTGTCGAAAXhoI
1303448ForwardCGCGGATCCCATATG-AAACAACTCCGCGABamHI-
NdeI
3449ReverseCCCGCTCGAG-GAATTTTGCACCGGATTGXhoI
1323450ForwardAAAGAATTC-ATGGAACCCTTCAAAACCTTAATTTGEco RI
3451ReverseAAAAAACTGCAG-TCACCATGTCGGCATTTGAAAAACPst I
1343452ForwardCGCGGATCCCATATG-TCCCAAGAAATCCTCBamHI-
NdeI
3453ReverseCCCGCTCGAG-CAGTTTGACCGAATGTTCXhoI
1353454ForwardCGCGGATCCCATATG-AAATACAAAAGAATCGTATTBamHI-
NdeI
3455ReverseCCCGCTCGAG-AAATTCGGTCAGAAGCAGGXhoI
1373456ForwardAAAAAAGGTACC-ATGATTACCCATCCCCAATTCGATCCKpn I
3457ReverseAAAAAACTGCAG-TCAGTGCTGTTTTTTCATGCCGAAPst I
137a3458ForwardAAAAAAGAATTC-GGCCGCAAACACGGCATCGGCTTCCTEco RI
3459ReverseAAAAAACTGCAG-TTAAGCGGGATGACGCGGCAGCATACCPst I
1383460ForwardAAAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGCEco RI
3461ReverseAAAAAATCTAGA-TCAGTTTAGGGATAGCAGGCGTACXba I
1413462ForwardAAAGAATTC-ATGAGCTTCAAAACCGATGCCGAAATCGCEco RI
3463ReverseAAACTGCAG-TCAGAACAAGCCGTGAATCACGCCPst I
1423464ForwardCGCGGATCCCATATG-CGTGCCGATTTCATGBamHI-
NdeI
3465ReverseCCCGCTCGAG-AAACTGCTGCACATGGGXhoI
1433466ForwardAAAAAAGAATTC-Eco RI
ATGCTCAGTTTCGGCTTTCTCGGCGTTCAGAC
3467ReverseAAAAAACTGCAG-TCAAACCCCGCCGTGTGTTTCTTTAATPst I
1443468ForwardAAAAAAGAATTC-GGTCTGATCGACGGGCGTGCCGTAACEco RI
3469ReverseAAAAAATCTAGA-TCGGCATCGGCCGGCATATGTCCGXba I
1463470ForwardAAAAAAGAATTC-Eco RI
CGCCAAGTCGTCATTGACCACGACAAAGTC
3471ReverseAAAAAACTGCAG-TTAGGCATCGGCAAATAGGAAACTGGGPst I
1473472ForwardAAAAAAGAATTC-ACTGAGCAATCGGTGGATTTGGAAACEco RI
3473ReverseAAAAAATCTAGA-TTAGGTAAAGCTGCGGCCCATTTGCGGXba I
1483474ForwardAAAAAAGAATTC-Eco RI
ATGGCGTTAAAAACATCAAACTTGGAACACGC
3475ReverseAAAAAATCTAGA-TCAGCCCTTCATACAGCCTTCGTTTTGXba I
1493476ForwardCGCGGATCCCATATG-CTGCTTGACAACAAAGTBamHI-
NdeI
3477ReverseCCCGCTCGAG-AAACTTCACGTTCACGCCXhoI
1503478ForwardCGCGGATCCCATATG-CAGAACACAAATCCGBamHI-
NdeI
3479ReverseCCCGCTCGAG-ATAAACATCACGCTGATAGCXhoI
1513480ForwardAAAAAAGAATTC-Eco RI
ATGAAACAAATCCGCAACATCGCCATCATCGC
3481ReverseAAAAAACTGCAG-TCAATCCAGCTTTTTAAAGTGGCGGCGPst I
1523482ForwardAAAAAAGAATTC-Eco RI
ATGAAAAACAAAACCAAAGTCTGGGACCTCCC
3483ReverseAAAAAACTGCAG-TCAGGACAGGAGCAGGATGGCGGCPst I
1533484ForwardAAAAAAGAATTC-ATGGCGTTTGCTTACGGTATGACEco RI
3485ReverseAAAAAACTGCAG-TCAGTCATGTTTTTCCGTTTCATTPst I
153a3486ForwardAAAAAAGAATTC-CGGACTTCGGTATCGGTTCCCCAGCATTGEco RI
3487ReverseAAAAAACTGCAG-Pst I
TTACGCCGACGAAATACTCAGACTTTTCGG
1543488ForwardCGCGGATCCCATATG-ACTGACAACAGCCCBamHI-
NdeI
3489ReverseCCCGCTCGAG-TCGGCTTCCTTTCGGGXhoI
1553490ForwardAAAAAAGAATTC-ATGAAAATCGGTATCCCACGCGAGTCEco RI
3491ReverseAAAAAACTGCAG-TTACCCTTTCTTAAACATATTCAGCATPst I
1563492ForwardAAAAAAGAATTC-GCACAGCAAAACGGTTTTGAAGCEco RI
3493ReverseAAAAAACTGCAG-TCAAGCAGCCGCGACAAACAGCCCPst I
1573494ForwardCGCGGATCCCATATG-AGGAACGAGGAAAAACBamHI-
NdeI
3495ReverseCCCGCTCGAG-AAAACACAATATCCCCGCXhoI
1583496ForwardAAAAAAGAATTC-GCGGAGCAGTTGGCGATGGCAAATTCTGCEco RI
3497ReverseAAAAAATCTAGA-TTATCCACAGAGATTGTTTCCCAGTTCXba I
1603498ForwardCGCGGATCCCATATG-GACATTCTGGACAAACBamHI-
NdeI
3499ReverseCCCGCTCGAG-TTTTTGCCCGCCTTCTTTXhoI
1633500ForwardAAAAAAGGTACC-ACCGTGCCGGATCAGGTGCAGATGTGKpn I
3501ReverseAAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTGXba I
163a3502ForwardAAAAAAGAATTC-CGGCTGGTGCAGATAATGAGCCAGACEco RI
3503ReverseAAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTGXba I
1643504ForwardCGCGGATCCCATATG-AACCGGACTTATGCCBamHI-
NdeI
3505ReverseCCCGCTCGAG-TTTGTTTCCGTCAAACTGCXhoI
1653506ForwardCGCGGATCCGCTAGC-GCTGAAGCGACAGACGBamHI-
NheI
3507ReverseCCCGCTCGAG-AATATCCAATACTTTCGCGXhoI
2063508ForwardCGCGGATCCCATATG-AAACACCGCCAACCGABamHI-
NdeI
3509ReverseCCCGCTCGAG-TTCTGTAAAAAAAGTATGTGCXhoI
2093510ForwardCGCGGATCCCATATG-CTGCGGCATTTAGGABamHI-
NdeI
3511ReverseCCCGCTCGAG-TACCCCTGAAGGCAACXhoI
2113512ForwardAAAAAAGAATTC-ATGTTGCGGGTTGCTGCTGCEco RI
3513ReverseAAAAAACTGCAG-CTATCCTGCGGATTGGCATTGAAAPst I
2123514ForwardCGCGGATCCCATATG-GACAATCTCGTATGGBamHI-
NdeI
3515ReverseCCCGCTCGAG-AGGGGTTAGATCCTTCCXhoI
2153516ForwardCGCGGATCCCATATG-GCATGGTTGGGTCGTBamHI-
NdeI
3517ReverseCCCGCTCGAG-CATATCTTTTGTATCATAAATCXhoI
2163518ForwardCGCGGATCCCATATG-GCAATGGCAGAAAACGBamHI-
NdeI
3519ReverseCCCGCTCGAG-TACAATCCGTGCCGCCXhoI
2173520ForwardCGCGGATCCCATATG-GCGGATGACGGTGTGBamHI-
NdeI
3521ReverseCCCGCTCGAG-ACCCCGAATATCGAATCCXhoI
2183522ForwardCGCGGATCCCATATG-GTCGCGGTCGATCBamHI-
NdeI
3523ReverseCCCGCTCGAG-TAACTCATAGAATCCTGCXhoI
2193524ForwardCGCGGATCCGCTAGC-ACGGCAAGGTTAAGBamHI-
NheI
3525ReverseCCCGCTCGAG-TTTAAACCATCTCCTCAAAACXhoI
2233526ForwardCGCGGATCCCATATG-GAATTCAGGCACCAAGTABamHI-
NdeI
3527ReverseCCCGCTCGAG-GGCTTCCCGCGTGTCXhoI
2253528ForwardCGCGGATCCCATATG-GACGAGTTGACCAACCBamHI-
NdeI
3529ReverseCCCGCTCGAG-GTTCAGAAAGCGGGACXhoI
2263530ForwardAAAGAATTC-CTTGCGATTATCGTGCGCACGCGEco RI
3531ReverseAAACTGCAG-TCAAAATCCCAAAACGGGGATPst I
2283532ForwardCGCGGATCCCATATG-TCGCAAGAAGCCAAACAGBamHI-
NdeI
3533ReverseCCCGCTCGAG-TTTGGCGGCATCTTTCATXhoI
2293534ForwardCGCGGATCCCATATG-CAAGAGGTTTTGCCCBamHI-
NdeI
3535ReverseCCCGCTCGAG-ACACAATATAGCGGATGAACXhoI
2303536ForwardCGCGGATCCCATATG-CATCCGGGTGCCGACBamHI-
NdeI
3537ReverseCCCGCTCGAG-AAGTTTGGCGGCTTCGGXhoI
2323538ForwardAAAAAAGAATTC-ATGTACGCTAAAAAAGGCGGTTTGGGEco RI
3539ReverseAAAAAACTGCAG-TCAAGGTTTTTTCCTGATTGCCGCCGCPst I
232a3540ForwardAAAAAAGAATTC-GCCAAGGCTGCCGATACACAAATTGAEco RI
3541ReverseAAAAAACTGCAG-TTAAACATTGTCGTTGCCGCCCAGATGPst I
2333542ForwardCGCGGATCCCATATG-GCGGACAAACCCAAGBamHI-
NdeI
3543ReverseCCCGCTCGAG-GACGGCATTGAGCAGXhoI
2343544ForwardCGCGGATCCCATATG-GCCGTTTCACTGACCGBamHI-
NdeI
3545ReverseGCCCAAGCTT-ACGGTTGGATTGCCATGHind III
2353546ForwardCGCGGATCCCATATG-GCCTGCCAAGTTCAAABamHI-
NdeI
3547ReverseCCCGCTCGAG-TTTGGGCTGCTCTTCXhoI
2363548ForwardCGCGGATCCCATATG-GCGCGTTTCGCCTTBamHI-
NdeI
3549ReverseCCCGCTCGAG-ATGGGTCGCGCGCCGTXhoI
2383550ForwardCGCGGATCCGCTAGC-AACGGTTTGGATGCCCGBamHI-
NheI
3551ReverseCCCGCTCGAG-TTTGTCTAAGTTCCTGATATGXhoI
2393552ForwardCCGGAATTCTACATATG-CTCCACCATAAAGGTATTGEcoRI-
NdeI
3553ReverseCCCGCTCGAG-TGGTGAAGAGCGGTTTAGXhoI
2403554ForwardCGCGGATCCCATATG-GACGTTGGACGATTTCBamHI-
NdeI
3555ReverseCCCGCTCGAG-AAACGCCATTACCCGATGXhoI
2413556ForwardCCGGAATTCTACATATG-CCAACACGTCCAACTEcoRI-
NdeI
3557ReverseCCCGCTCGAG-GAATGCGCCTGTAATTAATCXhoI
2423558ForwardCGCGGATCCCATATG-ATCGGCAAACTTGTTGBamHI-
NdeI
3559ReverseGCCCAAGCTT-ACCGATACGGTCGCAGHindIII
2433560ForwardCGCGGATCCCATATG-ACGATTTTTTCGATGCTGCBamHI-
NdeI
3561ReverseCCCGCTCGAG-CGACTTGGTTACCGCGXhoI
2443562ForwardCGCGGATCCCATATG-CCGTCTGAAGCCCBamHI-
NdeI
3563ReverseCCCGCTCGAG-TTTTTTCGGTAGGGGATTTXhoI
2463564ForwardCGCGGATCCCATATG-GACATCGGCAGTGCBamHI-
NdeI
3565ReverseCCCGCTCGAG-CCCGCGCTGCTGGAGXhoI
2473566ForwardCGCGGATCCCATATG-GTCGGATCGAGTTACBamHI-
NdeI
3567ReverseCCCGCTCGAG-AAGTGTTCTGTTTGCGCAXhoI
2483568ForwardCGCGGATCCCATATG-CGCAAACAGAACACTBamHI-
NdeI
3569ReverseCCCGCTCGAG-CTCATCATTATTGCTAACAXhoI
2493570ForwardCGCGGATCCCATATG-AAGAATAATGATTGCTTCBamHI-
NdeI
3571ReverseCCCGCTCGAG-TTCCCGACCTCCGACXhoI
2513572ForwardCGCGGATCCCATATG-CGTGCTGCGGTAGTBamHI-
NdeI
3573ReverseCCCGCTCGAG-TACGAAAGCCGGTCGTGXhoI
2533574ForwardAAAAAAGAATTC-ATGATTGACAGGAACCGTATGCTGCGEco RI
3575ReverseAAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTGPst I
253a3576ForwardAAAAAAGAATTC-AAAATCCTTTTGAAAACAAGCGAAAACGGEco RI
3577ReverseAAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTGPst I
2543578ForwardAAAAAAGAATTC-ATGTATACAGGCGAACGCTTCAATACEco RI
3579ReverseAAAAAATCTAGA-TCAGATTACGTAACCGTACACGCTGACXba I
2553580ForwardCGCGGATCCCATATG-GCCGCGTTGCGTTACBamHI-
NdeI
3581ReverseCCCGCTCGAG-ATCCGCAATACCGACCAGXhoI
2563582ForwardCGCGGATCCGCTAGC-TTTTAACACCGCCGGACBamHI-
NheI
3583ReverseCCCGCTCGAG-ACGCCTGTTTGTGCGGXhoI
2573584ForwardCGCGGATCCCATATG-GCGGTTTCTTTCCTGBamHI-
NdeI
3585ReverseCCCGCTCGAG-GCGCGTGAATATCGCGXhoI
2583586ForwardAAAAAAGAATTC-GATTATTTCTGGTGGATTGTTGCGTTCAGEco RI
3587ReverseAAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGGPst I
258a3588ForwardAAAAAAGAATTC-GCGAAGGCGGTGGCGCAAGGCGAEco RI
3589ReverseAAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGGPst I
2593590ForwardCGCGGATCCCATATG-GAAGAGCTGCCTCCGBamHI-
NdeI
3591ReverseCCCGCTCGAG-GGCTTTTCCGGCGTTTXhoI
2603592ForwardCGCGGATCCCATATG-GGTGCGGGTATGGTBamHI-
NdeI
3593ReverseCCCGCTCGAG-AACAGGGCGACACCCTXhoI
2613594ForwardAAAAAAGAATTC-CAAGATACAGCTCGGGCATTCGCEco RI
3595ReverseAAAAAACTGCAG-TCAAACCAACAAGCCTTGGTCACTPst I
2633596ForwardCGCGGATCCCATATG-GCACGTTTAACCGTABamHI-
NdeI
3597ReverseCCCGCTCGAG-GGCGTAAGCCTGCAATTXhoI
2643598ForwardAAAAAAGGTACC-GCCGACGCAGTGGTCAAGGCAGAAKpn I
3599ReverseAAACTGCAG-TCAGCCGGCGGTCAATACCGCCCGPst I
2653600ForwardAAAAAAGAATTC-GCGGAGGTCAAGAGAAGGTGTTTGEco RI
3601ReverseAAAAAACTGCAG-TTACGAATACGTCGTCAAAATGGGPst I
2663602ForwardAAAGAATTC-CTCATCTTTGCCAACGCCCCCTTCEco RI
3603ReverseAAACTGCAG-CTATTCCCTGTTGCGCGTGTGCCAPst I
2673604ForwardAAAGAATTC-TTCTTCCGATTCGATGTTAATCGEco RI
3605ReverseAAACTGCAG-TTAGTAAAAACCTTTCTGCTTGGCPst I
2693606ForwardAAAGAATTC-TGCAAACCTTGCGCCACGTGCCCEco RI
3607ReverseAAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAGPst I
269a3608ForwardAAAAAAGAATTC-GACTTTATCCAAAACACGGCTTCGCCEco RI
3609ReverseAAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAGPst I
2703610ForwardAAAGAATTC-GCCGTCAAGCTCGTTTTGTTGCAATGEco RI
3611ReverseAAACTGCAG-TTATTCGGCGGTAAATGCCGTCTGPst I
2713612ForwardCGCGGATCCCATATG-CCTGTGTGCAGCTCGACBamHI-
NdeI
3613ReverseCCCGCTCGAG-TCCCAGCCCCGTGGAGXhoI
2723614ForwardAAAGAATTC-ATGACCGCAAAGGAAGAACTGTTCGCEco RI
3615ReverseAAACTGCAG-TCAGAGCAGTTCCAAATCGGGGCTPst I
2733616ForwardAAAGAATTC-ATGAGTCTTCAGGCGGTATTTATATACCCEco RI
3617ReverseAAACTGCAG-TTACGCGTAAGAAAAAACTGCPst I
2743618ForwardCGCGGATCCCATATG-ACAGATTTGGTTACGGACBamHI-
NdeI
3619ReverseCCCGCTCGAG-TTTGCTTTCAGTATTATTGAAXhoI
2763620ForwardAAAAAAGAATTC-Eco RI
ATGATTTTGCCGTCGTCCATCACGATGATGCG
3621ReverseAAAAAACTGCAG-CTACACCACCATCGGCGAATTTATGGCPst I
2773622ForwardAAAAAAGAATTC-ATGCCCCGCTTTGAGGACAAGCTCGTAGGEco RI
3623ReverseAAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAAPst I
277a3624ForwardAAAAAAGAATTC-GGGGCGGCGGCTGGGTTGGACGTAGGEco RI
3625ReverseAAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAAPst I
2783626ForwardAAAAAAGGTACC-GTCAAAGTTGTATTAATCGGGCCTTTGCCKpn I
3627ReverseAAAAAACTGCAG-TCATTCAACCATATCAAATCTGCCPst I
278a3628ForwardAAAAAAGAATTC-AAAACTCTCCTAATTCGTCATAGTCGEco RI
3629ReverseAAAAAACTGCAG-TCATTCAACCATATCAAATCTGCCPst I
2793630ForwardCGCGGATCCCATATG-TTGCCTGCAATCACGATTBamHI-
NdeI
3631ReverseCCCGCTCGAG-TTTAGAAGCGGGCGGCAAXhoI
2803632ForwardAAAAAAGGTACC-GCCCCCCTGCCGGTTGTAACCAGKpn I
3633ReverseAAAAAACTGCAG-TTATTGCTTCATCGCGTTGGTCAAGGCPst I
2813634ForwardAAAAAAGAATTC-GCACCCGTCGGCGTATTCCTCGTCATGCGEco RI
3635ReverseAAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAGXba I
281a3636ForwardAAAAAAGAATTC-TCCTACCACATCGAAATTCCTTCCGGEco RI
3637ReverseAAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAGXba I
2823638ForwardAAAAAAGAATTC-CTTTACCTTGACCTGACCAACGGGCACAGEco RI
3639ReverseAAAAAACTGCAG-TCAACCTGCCAGTTGCGGGAATATCGTPst I
2833640ForwardCGCGGATCCCATATG-GCCGTCTTTACTTGGAAGBamHI-
NdeI
3641ReverseCCCGCTCGAG-ACGGCAGTATTTGTTTACGXhoI
2843642ForwardCGCGGATCCCATATG-TTTGCCTGCAAAAGAATCGBamHI-
NdeI
3643ReverseCCCGCTCGAG-CCGACTTTGCAAAAACTGXhoI
2863644ForwardCGCGGATCCCATATG-GCCGACCTTTCCGAAAABamHI-
NdeI
3645ReverseCCCGCTCGAG-GAAGCGCGTTCCCAAGXhoI
2873646ForwardCCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGGEcoRI-
NheI
3647ReverseCCCGCTCGAG-ATCCTGCTCTTTTTTGCCXhoI
2883648ForwardCGCGGATCCCATATG-CACACCGGACAGGBamHI-
NdeI
3649ReverseCCCGCTCGAG-CGTATCAAAGACTTGCGTXhoI
2903650ForwardCGCGGATCCCATATG-GCGGTTTGGGGCGGABamHI-
NdeI
3651ReverseCCCGCTCGAG-TCGGCGCGGCGGGCXhoI
2923652ForwardCGCGGATCCCATATG-TGCGGGCAAACGCCCBamHI-
NdeI
3653ReverseCCCGCTCGAG-TTGATTTTTGCGGATGATTTXhoI
2943654ForwardAAAAAAGAATTC-GTCTGGTCGATTCGGGTTGTCAGAACEco RI
3655ReverseAAAAAACTGCAG-TTACCAGCTGATATAAAACATCGCTTTPst I
2953656ForwardCGCGGATCCCATATG-AACCGGCCGGCCTCCBamHI-
NdeI
3657ReverseCCCGCTCGAG-CGATATTTGATTCCGTTGCXhoI
2973658ForwardAAAAAAGAATTC-GCATACATTGCTTCGACAGAGAGEco RI
3659ReverseAAAAAACTGCAG-TCAATCCGATTGCGACACGGTPst I
2983660ForwardAAAAAAGAATTC-CTGATTGCCGTGTGGTTCAGCCAAAACCCEco RI
3661ReverseAAAAAACTGCAG-TCATGGCTGTGTACTTGATGGTTGCGTPst I
2993662ForwardCGCGGATCCGCTAGC-CTACCTGTCGCCTCCGBamHI-
NheI
3663ReverseCCCGCTCGAG-TTGCCTGATTGCAGCGGXhoI
3023664ForwardAAAAAAGAATTC-ATGAGTCAAACCGATACGCAACGEco RI
3665ReverseAAAAAACTGCAG-TTAAGGTGCGGGATAGAATGTGGGCGCPst I
3053666ForwardAAAAAAGGTACC-GAATTTTTACCGATTTCCAGCACCGGAKpn I
3667ReverseAAAAAACTGCAG-TCATTCCCAACTTATCCAGCCTGACAGPst I
305a3668ForwardAAAAAAGGTACC-TCCCGTTCGGGCAGTACGATTATGGGKpn I
3669ReverseAAAAAACTGCAG-TTACAAACCGACATCATGCAGGGTGAAPst I
3063670ForwardCGCGGATCCCATATG-TTTATGAACAAATTTTCCCBamHI-
NdeI
3671ReverseCCCGCTCGAG-CCGCATCGGCAGACXhoI
3083672ForwardCGCGGATCCCATATG-TTAAATCGGGTATTTTATCBamHI-
NdeI
3673ReverseCCCGCTCGAG-ATCCGCCATTCCCTGCXhoI
3113674ForwardAAAAAAGGTACC-ATGTTCAGTTTTGGCTGGGTGTTTKpn I
3675ReverseAAACTGCAG-ATGTTCATATTCCCTGCCTTCGGCPst I
3123676ForwardAAAAAAGGTACC-ATGAGTATCCCATCCGGCGAAATTKpn I
3677ReverseAAACTGCAG-TCAGTTTTTCATCGATTGAACCGGPst I
3133678ForwardAAAAAAGAATTC-ATGGACGACCCGCGCACCTACGGATCEco RI
3679ReverseAAAAAACTGCAG-TCAGCGGCTGCCGCCGATTTTGCTPst I
4013680ForwardCGCGGATCCCATATG-AAGGCGGCAACACAGCBamHI-
NdeI
3681ReverseCCCGCTCGAG-CCTTACGTTTTTCAAAGCCXhoI
4023682ForwardAAAAAAGAATTC-GTGCCTCAGGCATTTTCATTTACCCTTGCEco RI
3683ReverseAAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTCXba I
402a3684ForwardAAAAAAGAATTC-AGGCTGATTGAAAACAAACACGGEco RI
3685ReverseAAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTCXba I
4063686ForwardCGCGGATCCCATATG-TGCGGGACACTGACAGBamHI-
NdeI
3687ReverseCCCGCTCGAG-AGGTTGTCCTTGTCTATGXhoI
5013688ForwardCGCGGATCCCATATG-GCAGGCGGAGATGGCBamHI-
NdeI
3689ReverseCCCGCTCGAG-GGTGTGATGTTCACCCXhoI
5023690ForwardCGCGGATCCCATATG-GTAGACGCGCTTAAGCABamHI-
NdeI
3691ReverseCCCGCTCGAG-AGCTGCATGGCGGCGXhoI
5033692ForwardCGCGGATCCCATATG-TGTTCGGGGAAAGGCGBamHI-
NdeI
3693ReverseCCCGCTCGAG-CCGCGCATTCCTCGCAXhoI
5043694ForwardCGCGGATCCCATATG-AGCGATATTGAAGTGACGBamHI-
NdeI
3695ReverseGCCCAAGCTT-TGATTCAAGTCCTTGCCGHindIII
5053696ForwardCGCGGATCCCATATG-TTTCGTTTACAATTCAGGBamHI-
NdeI
3697ReverseCCCGCTCGAG-CGGCGTTTTATAGCGGXhoI
5103698ForwardCGCGGATCCCATATG-CCTTCGCGGACACBamHI-
NdeI
3699ReverseCCCGCTCGAG-GCGCACTGGCAGCGXhoI
5123700ForwardCGCGGATCCCATATG-GGACATGAAGTAACGGTBamHI-
NdeI
3701ReverseCCCGCTCGAG-AGGAATAGCCTTTGACGXhoI
5153702ForwardCGCGGATCCCATATG-GAGGAAATAGCCTTCGABamHI-
NdeI
3703ReverseCCCGCTCGAG-AAATGCCGCAAAGCATCXhoI
5163704ForwardCGCGGATCCCATATG-TGTACGTTGATGTTGTGGBamHI-
NdeI
3705ReverseCCCGCTCGAG-TTTGCGGGCGGCATCXhoI
5173706ForwardCGCGGATCCCATATG-GGTAAAGGTGTGGAAATABamHI-
NdeI
3707ReverseCCCGCTCGAG-GTGCGCCCAGCCGTXhoI
5183708ForwardAAAGAATTC-GCTTTTTTACTGCTCCGACCGGAAGGEco RI
3709ReverseAAACTGCAG-TCAAATTTCAGACTCTGCCACPst I
5193710ForwardCGCGGATCCCATATG-TTCAAATCCTTTGTCGTCABamHI-
NdeI
3711ReverseCCCGCTCGAG-TTTGGCGGTTTTGCTGCXhoI
5203712ForwardCGCGGATCCCATATG-CCTGCGCTTCTTTCABamHI-
NdeI
3713ReverseCCCGCTCGAG-ATATTTACATTTCAGTCGGCXhoI
5213714ForwardCGCGGATCCCATATG-GCCAAAATCTATACCTGCBamHI-
NdeI
3715ReverseCCCGCTCGAG-CATACGCCCCAGTTCCXhoI
5223716ForwardCGCGGATCCCATATG-ACTGAGCCGAAACACBamHI-
NdeI
3717ReverseGCCCAAGCTT-TTCTGATTTCAAATCGGCAHindIII
5233718ForwardCGCGGATCCCATATG-GCTCTGCTTTCCGCGBamHI-
NdeI
3719ReverseCCCGCTCGAG-AGGGTGTGTGATAATAAGAAGXhoI
5253720ForwardCGCGGATCCCATATG-GCCGAAATGGTTCAAATCBamHI-
NdeI
3721ReverseCCCGCTCGAG-GCCCGTGCATATCATAAAXhoI
5273722ForwardAAAGAATTC-TTCCCTCAATGTTGCCGTTTTCGEco RI
3723ReverseAAACTGCAG-TTATGCTAAACTCGAAACAAATTCPst I
5293724ForwardCGCGGATCCGCTAGC-TGCTCCGGCAGCAAAACBamHI-
NheI
3725ReverseGCCCAAGCTT-ACGCAGTTCGGAATGGAGHindIII
5303726ForwardCGCGGATCCCATATG-AGTGCGAGCGCGGBamHI-
NdeI
3727ReverseCCCGCTCGAG-ACGACCGACTGATTCCGXhoI
5313728ForwardAAAAAAGAATTC-TATGCCGCCGCCTACCAAATCTACGGEco RI
3729ReverseAAAAAACTGCAG-TTAAAACAGCGCCGTGCCGACGACAAGPst I
5323730ForwardAAAAAAGAATTC-ATGAGCGGTCAGTTGGGCAAAGGTGCEco RI
3731ReverseAAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAAPst I
532a3732ForwardAAAAAAGAATTC-TTGGGTGTCGCGTTTGAGCCGGAAGTEco RI
3733ReverseAAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAAPst I
5353734ForwardAAAGAATTC-ATGCCCTTTCCCGTTTTCAGACEco RI
3735ReverseAAACTGCAG-TCAGACGACCCCGCCTTCCCCPst I
5373736ForwardCGCGGATCCCATATG-CATACCCAAAACCAATCCBamHI-
NdeI
3737ReverseCCCGCTCGAG-ATCCTGCAAATAAAGGGTTXhoI
5383738ForwardCGCGGATCCCATATG-GTCGAGCTGGTCAAAGCBamHI-
NdeI
3739ReverseCCCGCTCGAG-TGGCATTTCGGTTTCGTCXhoI
5393740ForwardCGCGGATCCGCTAGC-GAGGATTTGCAGGAAABamHI-
NheI
3741ReverseCCCGCTCGAG-TACCAATGTCGGCAAATCXhoI
5423742ForwardAAAGAATTC-ATGCCGTCTGAAACCGTGTCEco RI
3743ReverseAAACTGCAG-TTACCGCGAACCGGTCAGGATPst I
5433744ForwardAAAAAAGAATTC-GCCTTCGATGGCGACGTTGTAGGTACEco RI
3745ReverseAAAAAATCTAGA-Xba I
TTAATGAAGAAGAACATATTGGAATTTTGG
543a3746ForwardAAAAAAGAATTC-GGCAAAACTCGTCATGAATTTGCEco RI
3747ReverseAAAAAATCTAGA-Xba I
TTAATGAAGAAGAACATATTGGAATTTTGG
5443748ForwardAAAGAATTC-GCGCCCGCCTTCTCCCTGCCCGACCTGCACGGEco RI
3749ReverseAAACTGCAG-CTATTGCGCCACGCGCGTATCGATPst I
544a3750ForwardAAAAAAGAATTC-Eco RI
GCAAATGACTATAAAAACAAAAACTTCCAAGTACTTGC
3751ReverseAAACTGCAG-CTATTGCGCCACGCGCGTATCGATPst I
5473752ForwardAAAGAATTC-ATGTTCGTAGATAACGGATTTAATAAAACEco RI
3753ReverseAAACTGCAG-TTAACAACAAAAAACAAACCGCTTPst I
5483754ForwardAAAGAATTC-GCCTGCAAACCTCAAGACAACAGTGCGGCEco RI
3755ReverseAAACTGCAG-TCAGAGCAGGGTCCTTACATCGGCPst I
5503756ForwardAAAAAAGTCGAC-Sal I
ATGATAACGGACAGGTTTCATCTCTTTCATTTTCC
3757ReverseAAACTGCAG-TTACGCAAACGCTGCAAAATCCCCPst I
550a3758ForwardAAAAAAGAATTC-GTAAATCACGCCTTTGGAGTCGCAAACGGEco RI
3759ReverseAAACTGCAG-TTACGCAAACGCTGCAAAATCCCCPst I
5523760ForwardAAAAAAGAATTC-TTGGCGCGTTGGCTGGATACEco RI
3761ReverseAAACTGCAG-TTATTTCTGATGCCTTTTCCCAACPst I
5543762ForwardCGCGGATCCCATATG-TCGCCCGCGCCCAACBamHI-
NdeI
3763ReverseCCCGCTCGAG-CTGCCCTGTCAGACACXhoI
5563764ForwardAAAGAATTC-GCGGGCGGTTTTGTTTGGACATCCCGEco RI
3765ReverseAAACTGCAG-TTAACGGTGCGGACGTTTCTGACCPst I
5573766ForwardCGCGGATCCCATATG-TGCGGTTTCCACCTGAABamHI-
NdeI
3767ReverseCCCGCTCGAG-TTCCGCCTTCAGAAAGGXhoI
5583768ForwardAAAGAATTC-GAGCTTTATATGTTTCAACAGGGGACGGCEco RI
3769ReverseAAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGAPst I
558a3770ForwardAAAAAAGAATTC-ATTAGATTCTATCGCCATAAACAGACGGGEco RI
3771ReverseAAAAAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGAPst I
5603772ForwardAAAAAAGAATTC-Eco RI
TCGCCTTTCCGGGACGGGGCGCACAAGATGGC
3773ReverseAAAAAACTGCAG-TCATGCGGTTTCAGACGGCATTTTGGCPst I
5613774ForwardCCGGAATTCTACATATG-ATACTGCCAGCCCGTEcoRI-
NdeI
3775ReverseCCCGCTCGAG-TTTCAAGCTTTCTTCAGATGXhoI
5623776ForwardCGCGGATCCCATATG-GCAAGCCCGTCGAGBamHI-
NdeI
3777ReverseCCCGCTCGAG-AGACCAACTCCAACTCGTXhoI
5653778ForwardCGCGGATCCCATATG-AAGTCGAGCGCGAAATACBamHI-
NdeI
3779ReverseCCCGCTCGAG-GGCATTGATCGGCGGCXhoI
5663780ForwardCGCGGATCCCATATG-GTCGGTGGCGAAGAGGBamHI-
NdeI
3781ReverseCCCGCTCGAG-CGCATGGGCGAAGTCAXhoI
5673782ForwardCCGGAATTCTACATATG-AGTGCGAACATCCTTGEcoRI-
NdeI
3783ReverseCCCGCTCGAG-TTTCCCCGACACCCTCGXhoI
5683784ForwardCGCGGATCCCATATG-CTCAGGGTCAGACCBamHI-
NdeI
3785ReverseCCCGCTCGAG-CGGCGCGGCGTTCAGXhoI
5693786ForwardAAAAAAGAATTC-CTGATTGCCTTGTGGGAATATGCCCGEco RI
3787ReverseAAAAAACTGCAG-TTATGCATAGACGCTGATAACGGCAATPst I
5703788ForwardCGCGGATCCCATATG-GACACCTTCCAAAAAATCGBamHI-
NdeI
3789ReverseCCCGCTCGAG-GCGGGCGTTCATTTCTTTXhoI
5713790ForwardAAAAAAGAATTC-Eco RI
ATGGGTATTGCCGGCGCCGTAAATGTTTTGAACCC
3791ReverseAAAAAACTGCAG-TTATGGCCGACGCGCGGCTACCTGACGPst I
5723792ForwardCGCGGATCCCATATG-GCGCAAAAAGGCAAAACCBamHI-
NdeI
3793ReverseCCCGCTCGAG-GCGCAGTGTGCCGATAXhoI
5733794ForwardCGCGGATCCCATATG-CCCTGTTTGTGCCGBamHI-
NdeI
3795ReverseCCCGCTCGAG-GACGGTGTCATTTCGCCXhoI
5743796ForwardCGCGGATCCCATATG-TGGTTTGCCGCCCGCBamHI-
NdeI
3797ReverseCCCGCTCGAG-AACTTCGATTTTATTCGGGXhoI
5753798ForwardCGCGGATCCCATATG-GTTTCGGGCGAGGBamHI-
NdeI
3799ReverseCCCGCTCGAG-CATTCCGAATCTGAACAGXhoI
5763800ForwardCGCGGATCCCATATG-GCCGCCCCCGCATCTBamHI-
NdeI
3801ReverseCCCGCTCGAG-ATTTACTTTTTTGATGTCGACXhoI
5773802ForwardCGCGGATCCCATATG-GAAAGGAACGGTGTATTTBamHI-
NdeI
3803ReverseCCCGCTCGAG-AGGCTGTTTGGTAGATTCGXhoI
5783804ForwardCGCGGATCCCATATG-AGAAGGTTCGTACAGBamHI-
NdeI
3805ReverseCCCGCTCGAG-GCCAACGCCTCCACGXhoI
5793806ForwardCGCGGATCCCATATG-AGATTGGGCGTTTCCACBamHI-
NdeI
3807ReverseCCCGCTCGAG-AGAATTGATGATGTGTATGTXhoI
5803808ForwardCGCGGATCCCATATG-AGGCAGACTTCGCCGABamHI-
NdeI
3809ReverseCCCGCTCGAG-CACTTCCCCCGAAGTGXhoI
5813810ForwardCGCGGATCCCATATG-CACTTCGCCCAGCBamHI-
NdeI
3811ReverseCCCGCTCGAG-CGCCGTTTGGCTTTGGXhoI
5823812ForwardAAAAAAGAATTC-TTTGGAGAGACCGCGCTGCAATGCGCEco RI
3813ReverseAAAAAATCTAGA-TCAGATGCCGTCCCAGTCGTTGAAXba I
5833814ForwardAAAAAAGAATTC-ACTGCCGGCAATCGACTGCATAATCGEco RI
3815ReverseAAAAAACTGCAG-TTAACGGAGGTCAATATGATGAAATTGPst I
5843816ForwardAAAAAAGAATTC-Eco RI
GCGGCTGAAGCATTGAATTACAATATTGTC
3817ReverseAAAAAACTGCAG-TCAGAACTGAACCGTCCCATTGACGCTPst I
5853818ForwardAAAAAAGGTACC-TCTTTCTGGCTGGTGCAGAACACCCTTGCEco RI
3819ReverseAAAAAACTGCAG-TCAGTTCGCACTTTTTTCTGTTTTGGAPst I
5863820ForwardCGCGGATCCCATATG-GCAGCCCATCTCGBamHI-
NdeI
3821ReverseCCCGCTCGAG-TTTCAGCGAATCAAGTTTCXhoI
5873822ForwardCGCGGATCCCATATG-GACCTGCCCTTGACGABamHI-
NdeI
3823ReverseCCCGCTCGAG-AAATGTATGCTGTACGCCXhoI
5883824ForwardAAAAAAGAATTC-GCCGTCCTGACTTCCTATCAAGAACCAGGEco RI
3825ReverseAAAAAACTGCAG-TTATTTGTTTTTGGGCAGTTTCACTTCPst I
5893826ForwardAAAAAAGAATTC-Eco RI
ATGCAACAAAAAATCCGTTTCCAAATCGAAGG
3827ReverseAAAAAACTGCAG-CTAATCGATTTTTACCCGTTTCAGGCGPst I
5903828ForwardAAAAAAGAATTC-ATGAAAAAACCTTTGATTTCAGTTGCGGCEco RI
3829ReverseAAAAAACTGCAG-TTACTGCTGCGGCTCTGAAACCATPst I
5913830ForwardAAAAAAGAATTC-CACTACATCGTTGCCAGATTGTGCGGEco RI
3831ReverseAAAAAACTGCAG-CTAACCGAGCAGCCGGGTAACGTCGTTPst I
592a3832ForwardAAAAAAGAATTC-CGCGATTACACCGCCAAGCTGAAAATGGGEco RI
3833ReverseAAAAAACTGCAG-TTACCAAACGTCGGATTTGATACGPst I
5933834ForwardCGCGGATCCGCTAGC-CTTGAACTGAACGGACTCBamHI-
NheI
3835ReverseCCCGCTCGAG-GCGGAAGCGGACGATTXhoI
594a3836ForwardAAAAAAGAATTC-GGTAAGTTCGCCGTTCAGGCCTTTCAEco RI
3837ReverseAAAAAACTGCAG-TTACGCCGCCGTTTCCTGACACTCGCGPst I
5953838ForwardAAAAAAGAATTC-TGCCAGCCGCCGGAGGCGGAGAAAGCEco RI
3839ReverseAAAAAACTGCAG-TTATTTCAAGCCGAGTATGCCGCGPst I
5963840ForwardCGCGGATCCCATATG-TCCCAACAATACGTCBamHI-
NdeI
3841ReverseCCCGCTCGAG-ACGCGTTACCGGTTTGTXhoI
5973842ForwardCGCGGATCCCATATG-CTGCTTCATGTCAGCBamHI-
NdeI
3843ReverseGCCCAAGCTT-ACGTATCCAGCTCGAAGHindIII
6013844ForwardCGCGGATCCCATATG-ATATGTTCCCAACCGGCAATBamHI-
NdeI
3845ReverseCCCGCTCGAG-AAAACAATCCTCAGGCACXhoI
6023846ForwardCGCGGATCCGCTAGC-TTGCTCCATCAATGCBamHI-
NheI
3847ReverseCCCGCTCGAG-ATGCAGCTGCTAAAAGCGXhoI
6033848ForwardAAAAAAGAATTC-CTGTCCTCGCGTAGGCGGGGACGGGGEco RI
3849ReverseAAAAAACTGCAG-CTACAAGATGCCGGCAAGTTCGGCPst I
6043850ForwardCGCGGATCCGCTAGC-CCCGAAGCGCACTTBamHI-
NheI
3851ReverseCCCGCTCGAG-GACGGCATCTGCACGGXhoI
606a3852ForwardAAAAAAGAATTC-CGCGAATACCGCGCCGATGCGGGCGCEco RI
3853ReverseAAAAAACTGCAG-TTAAAGCGATTTGAGGCGGGCGATACGPst I
6073854ForwardAAAAAAGAATTC-ATGCTGCTCGACCTCAACCGCTTTTCEco RI
3855ReverseAAAAAACTGCAG-TCAGACGGCCTTATGCGATCTGACPst I
6083856ForwardAAAAAAGAATTC-ATGTCCGCCCTCCTCCCCATCATCAACCGEco RI
3857ReverseAAAAAACTGCAG-TTAGTCTATCCAAATGTCGCGTTCPst I
6093858ForwardCGCGGATCCCATATG-GTTGTGGATAGACTCGBamHI-
NdeI
3859ReverseCCCGCTCGAG-CTGGATTATGATGTCTGTCXhoI
6103860ForwardCGCGGATCCCATATG-ATTGGAGGGCTTATGCABamHI-
NdeI
3861ReverseCCCGCTCGAG-ACGCTTCAACATCTTTGCCXhoI
6113862ForwardCGCGGATCCCATATG-CCGTCTCAAAACGGGBamHI-
NdeI
3863ReverseCCCGCTCGAG-AACGACTTTGAACGCGCAAXhoI
6133864ForwardCGCGGATCCCATATG-TCGCGTTCGAGCCG3BamHI-
NdeI
3865ReverseCCCGCTCGAG-AGCCTGTAAAATAAGCGGCXhoI
6143866ForwardCGCGGATCCCATATG-TCCGTCGTGAGCGGCBamHI-
NdeI
3867ReverseCCCGCTCGAG-CCATACTGCGGCGTTCXhoI
6163868ForwardAAAAAAGAATTC-ATGTCAAACACAATCAAAATGGTTGTCGGEco RI
3869ReverseAAAAAATCTAGA-TTAGTCCGGGCGGCAGGCAGCTCGXba I
619a3870ForwardAAAAAAGAATTC-GGGCTTCTCGCCGCCTCGCTTGCEco RI
3871ReverseAAAAAACTGCAG-TCATTTTTTGTGTTTTAAAACGAGATAPst I
6223872ForwardCGCGGATCCCATATG-GCCGCCCTGCCTAAAGBamHI-
NdeI
3873ReverseCCCGCTCGAG-TTTGTCCAAATGATAAATCTGXhoI
6243874ForwardCGCGGATCCCATATG-TCCCCGCGCTTTTACCGBamHI-
NdeI
3875ReverseCCCGCTCGAG-AGATTCGGGCCTGCGCXhoI
6253876ForwardCGCGGATCCCATATG-TTTGCAACCAGGAAAATGBamHI-
NdeI
3877ReverseCCCGCTCGAG-CGGCAAAATTACCGCCTTXhoI
627a3878ForwardAAAAAAGAATTC-AAAGCAGGCGAGGCAGGCGCGCTGGGEco RI
3879ReverseAAAAAACTGCAG-Pst I
TTACGAATGAAACAGGGTACCCGTCATCAAGGC
6283880ForwardAAAAAAGGTACC-GCCTTACAAACATGGATTTTGCGTTCKpn I
3881ReverseAAAAAACTGCAG-CTACGCACCTGAAGCGCTGGCAAAPst I
629a3882ForwardAAAAAAGAATTC-GCCACCTTTATCGCGTATGAAAACGAEco RI
3883ReverseAAAAAACTGCAG-TTACAACACCGCCGTCCGGTTCAAACCPst I
630a3884ForwardAAAAAAGAATTC-GCGGCTTTGGGTATTTCTTTCGGEco RI
3885ReverseAAAAAACTGCAG-TTAGGAGACTTCGCCAATGGAGCCGGGPst I
6353886ForwardAAAAAAGAATTC-Eco RI
ATGACCCAGCGACGGGTCGGCAAGCAAAACCG
3887ReverseAAAAAACTGCAG-TTAATCCACTATAATCCTGTTGCTPst I
6383888ForwardAAAAAAGAATTC-ATGATTGGCGAAAAGTTTATCGTAGTTGGEco RI
3889ReverseAAAAAACTGCAG-TCACGAACCGATTATGCTGATCGGPst I
6393890ForwardCGCGGATCCCATATG-ATGCTTTATTTTGTTCGBamHI-
NdeI
3891ReverseCCCGCTCGAG-ATCGCGGCTGCCGACXhoI
6423892ForwardCGCGGATCCCATATG-CGGTATCCGCCGCAATBamHI-
NdeI
3893ReverseCCCGCTCGAG-AGGATTGCGGGGCATTAXhoI
6433894ForwardCGCGGATCCCATATG-GCTTCGCCGTCGGCAGBamHI-
NdeI
3895ReverseCCCGCTCGAG-AACCGAAAAACAGACCGCXhoI
6443896ForwardAAAAAAGAATTC-Eco RI
ATGCCGTCTGAAAGGTCGGCGGATTGTTGCCC
3897ReverseAAAAAATCTAGA-CTACCCGCAATATCGGCAGTCCAATATPst I
6453898ForwardAAAAAAGAATTC-GTGGAACAGAGCAACACGTTAAATCGEco RI
3899ReverseAAAAAACTGCAG-CTACGAGGAAACCGAAGACCAGGCCGCPst I
6473900ForwardAAAAAAGAATTC-ATGCAAAGGCTCGCCGCAGACGGEco RI
3901ReverseAAAAAACTGCAG-TTAGATTATCAGGGATATCCGGTAGAAPst I
6483902ForwardAAAAAAGAATTC-Eco RI
ATGAACAGGCGCGACGCGCGGATCGAACG
3903ReverseAAAAAACTGCAG-TCAAGCTGTGTGCTGATTGAATGCGACPst I
6493904ForwardAAAAAAGAATTC-GGTACGTCAGAACCCGCCCACCGEco RI
3905ReverseAAAAAACTGCAG-TTAACGGCGGAAACTGCCGCCGTCPst I
6503906ForwardAAAAAAGAATTC-ATGTCCAAACTCAAAACCATCGCEco RI
3907ReverseAAAAAACTGCAG-TCAGACGGCATGGCGGTCTGTTTTPst I
6523908ForwardAAAAAAGGTACC-Kpn I
GCTGCCGAAGACTCAGGCCTGCCGCTTTACCG
3909ReverseAAAAAACTGCAG-TTATTTGCCCAGTTGGTAGAATGCGGCPst I
6533910ForwardAAAAAAGAATTC-GCGGCTTTGCCGGTAATTTTCATCGGEco RI
3911ReverseAAAAAACTGCAG-CTATGCCGGTCTGGTTGCCGGCGGCGAPst I
656a3912ForwardAAAAAAGAATTC-CGGCCGACGTCGTTGCGTCCTAAGTCEco RI
3913ReverseAAAAAACTGCAG-CTACGATTTCGGCGATTTCCACATCGTPst I
6573914ForwardAAAAAAGAATTC-GCAGAATTTGCCGACCGCCATTTGTGCGCEco RI
3915ReverseAAAAAACTGCAG-TTATAGGGACTGATGCAGTTTTTTTGCPst I
6583916ForwardCGCGGATCCCATATG-GTGTCCGGAATTGTGBamHI-
NdeI
3917ReverseCCCGCTCGAG-GGCAGAATGTTTACCGTTXhoI
6613918ForwardAAAAAAGAATTC-Eco RI
ATGCACATCGGCGGCTATTTTATCGACAACCC
3919ReverseAAAAAACTGCAG-TCACGACGTGTCTGTTCGCCGTCGGGC Pst I
6633920ForwardCGCGGATCCCATATG-TGTATCGAGATGAAATTBamHI-
NdeI
3921ReverseCCCGCTCGAG-GTAAAAATCGGGGCTGCXhoI
6643922ForwardCGCGGATCCCATATG-GCGGCTGGCGCGGTBamHI-
NdeI
3923ReverseCCCGCTCGAG-AAATCGAGTTTTACACCACXhoI
6653924ForwardAAAAAAGAATTC-ATGAAATGGGACGAAACGCGCTTCGGEco RI
3925ReverseAAAAAACTGCAG-TCAATCCAAAATTTTGCCGACGATTTCPst I
6663926ForwardAAAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGCEco RI
3927ReverseAAAAAATCTAGA-TCAGTTTAGGGATAGCAGGCGTACXba I
6673928ForwardAAAAAAGAATTC-Eco RI
CCGCATCCGTTTGATTTCCATTTCGTATTCGTCCG
3929ReverseAAAAAACTGCAG-TTAATGACACAATAGGCGCAAGTCPst I
6693930ForwardAAAAAAGAATTC-ATGCGCCGCATCATTAAAAAACACCAGCCEco RI
3931ReverseAAAAAACTGCAG-TTACAGTATCCGTTTGATGTCGGCPst I
670a3932ForwardAAAAAAGAATTC-AAAAACGCTTCGGGCGTTTCGTCTTCEco RI
3933ReverseAAAAAACTGCAG-Pst I
TTAGGAGCTTTTGGAACGCGTCGGACTGGC
6713934ForwardCGCGGATCCCATATG-ACCAGCAGGGTAACBamHI-
NdeI
3935ReverseCCCGCTCGAG-AGCAACTATAAAAACGCAAGXhoI
6723936ForwardCGCGGATCCCATATG-AGGAAAATCCGCACCBamHI-
NdeI
3937ReverseCCCGCTCGAG-ACGGGATAGGCGGTTGXhoI
6733938ForwardAAAAAAGAATTC-ATGGATATTGAAACCTTCCTTGCAGGEco RI
3939ReverseAAAAAACTGCAG-CTACAAACCCAGCTCGCGCAGGAAPst I
6743940ForwardAAAAAAGAATTC-ATGAAAACAGCCCGCCGCCGTTCCCGEco RI
3941ReverseAAAAAACTGCAG-TCAACGGCGTTTGGGCTCGTCGGGPst I
6753942ForwardCGCGGATCCCATATG-AACACCATCGCCCCBamHI-
NdeI
3943ReverseCCCGCTCGAG-TTCTTCGTCTTCAAACTGTXhoI
677a3944ForwardAAAAAAGAATTC-AGACGGCATTCCCGATCAGTCGATTTTGAEco RI
3945ReverseAAAAAACTGCAG-TTACGTATGCGCGAAATCGACCGCCGCPst I
6803946ForwardCGCGGATCCGCTAGC-ACGAAGGGCAGTTCGGBamHI-
NheI
3947ReverseCCCGCTCGAG-CATCAAAAACCTGCCGCXhoI
6813948ForwardAAAAAAGAATTC-ATGACGACGCCGATGGCAATCAGTGCEco RI
3949ReverseAAAAAACTGCAG-TTACCGTCTTCCGCAAAAAACAGCPst I
6833950ForwardCGCGGATCCCATATG-TGCAGCACACCGGACAABamHI-
NdeI
3951ReverseCCCGCTCGAG-GAGTTTTTTTCCGCATACGXhoI
6843952ForwardCGCGGATCCCATATG-TGCGGTACTGTGCAAAGBamHI-
NdeI
3953ReverseCCCGCTCGAG-CTCGACCATCTGTTGCGXhoI
6853954ForwardCGCGGATCCCATATG-TGTTTGCTTAATAATAAACATTBamHI-
NdeI
3955ReverseCCCGCTCGAG-CTTTTTCCCCGCCGCAXhoI
6863956ForwardCGCGGATCCCATATG-TGCGGCGGTTCGGAAGBamHI-
NdeI
3957ReverseCCCGCTCGAG-CATTCCGATTCTGATGAAGXhoI
6873958ForwardCGCGGATCCCATATG-TGCGACAGCAAAGTCCABamHI-
NdeI
3959ReverseCCCGCTCGAG-CTGCGCGGCTTTTTGTTXhoI
6903960ForwardCGCGGATCCCATATG-TGTTCTCCGAGCAAAGACBamHI-
NdeI
3961ReverseCCCGCTCGAG-TATTCGCCCCGTGTTTGGXhoI
6913962ForwardCGCGGATCCCATATG-GCCACGGCTTATATCCCBamHI-
NdeI
3963ReverseCCCGCTCGAG-TTTGAGGCAGGAAGAAAGXhoI
6943964ForwardCGCGGATCCCATATG-TTGGTTTCCGCATCCGGBamHI-
NdeI
3965ReverseCCCGCTCGAG-TCTGCGTCGGTGCGGTXhoI
6953966ForwardCGCGGATCCCATATG-TTGCCTCAAACTCGTCCGBamHI-
NdeI
3967ReverseCCCGCTCGAG-TCGTTTGCGCACGGCTXhoI
6963968ForwardCGCGGATCCCATATG-TTGGGTTGCCGGCAGGBamHI-
NdeI
3969ReverseCCCGCTCGAG-TTGATTGCCGCAATGATGXhoI
700a3970ForwardAAAAAAGAATTC-GCATCGACAGACGGTGTGTCGTGGACEco RI
3971ReverseAAAAAACTGCAG-TTACGCTACCGGCACGACTTCCAAACCPst I
7013972ForwardCGCGGATCCCATATG-AAGACTTGTTTGGATACTTCBamHI-
NdeI
3973ReverseCCCGCTCGAG-TGCCGACAACAGCCTCXhoI
7023974ForwardAAAAAAGAATTC-ATGCCGTGTTCCAAAGCCAGTTGGATTTCEco RI
3975ReverseAAAAAACTGCAG-TTAACCCCATTCCACCCGGAGAACCGAPst I
7033976ForwardCGCGGATCCGCTAGC-CAAACGCTGGCAACCGBamHI-
NheI
3977ReverseCCCGCTCGAG-TTTTGCAGGTTTGATGTTTGXhoI
704a3978ForwardAAAAAAGAATTC-GCTTCTACCGGTACGCTGGCGCGEco RI
3979ReverseAAAAAACTGCAG-Pst I
TTAGTTTTGCCGGATAATATGGCGGGTGCG
7073980ForwardCGCGGATCCGCTAGC-GAAATTATTAACGATGCAGABamHI-
NheI
3981ReverseCCCGCTCGAG-GAAACTGTAATTCAAGTTGAXhoI
7083982ForwardCGCGGATCCGCTAGC-CCTTTTAAGCCATCCAAAABamHI-
NheI
3983ReverseCCCGCTCGAG-TTGACCGGTGAGGACGXhoI
7103984ForwardCGCGGATCCCATATG-GAAACCCACGAAAAAATCBamHI-
NdeI
3985ReverseCCCGCTCGAG-AACGGTTTCGGTCAGXhoI
7143986ForwardCGCGGATCCCATATG-AGCTATCAAGACATCTTBamHI-
NdeI
3987ReverseCCCGCTCGAG-GCGGTAGGTAAATCGGATXhoI
7163988ForwardCGCGGATCCCATATG-GCCAACAAACCGGCAAGBamHI-
NdeI
3989ReverseCCCGCTCGAG-TTTAGAACCGCATTTGCCXhoI
7183990ForwardCGCGGATCCCATATG-GAGCCGATAATGGCAAABamHI-
NdeI
3991ReverseCCCGCTCGAG-GGCGCGGGCATGGTCTTGTCCXhoI
7203992ForwardCGCGGATCCCATATG-AGCGGATGGCATACCBamHI-
NdeI
3993ReverseCCCGCTCGAG-TTTTGCATAGCTGTTGACCAXhoI
7233994ForwardCGCGGATCCCATATG-CGACCCAAGCCCCBamHI-
NdeI
3995ReverseCCCGCTCGAG-AATGCGAATCCGCCGCCXhoI
7253996ForwardCGCGGATCCCATATG-GTGCGCACGGTTAAABamHI-
NdeI
3997ReverseCCCGCTCGAG-TTGCTTATCCTTAAGGGTTAXhoI
7263998ForwardCGCGGATCCCATATG-ACCATCTATTTCAAAAACBamHI-
NdeI
3999ReverseCCCGCTCGAG-GCCGATGTTTAGCGTCCXhoI
7284000ForwardCGCGGATCCCATATG-TTTTGGCTGGGAACGGGBamHI-
NdeI
4001ReverseCCCGCTCGAG-GTGAGAAAGGTCGCGCXhoI
7294002ForwardCGCGGATCCCATATG-TGCACCATGATTCCCCABamHI-
NdeI
4003ReverseGCCCAAGCTT-TTTGTCGGTTTGGGTATCHindIII
7314004ForwardCGCGGATCCGCTAGC-GCCGTGCCGGAGGBamHI-
NheI
4005ReverseCCCGCTCGAG-ACGGGCGCGGCAGXhoI
7324006ForwardCCGGAATTCTACATATG-TCGAAACCTGTTTTTAAGAAEcoRI-
NdeI
4007ReverseCCCGCTCGAG-CTTCTTATCTTTTTTATCTTTCXhoI
7334008ForwardCGCGGATCCCATATG-GCCTGCGGCGGCAABamHI-
NdeI
4009ReverseCCCGCTCGAG-TCGCTTGCCTCCTTTACXhoI
7344010ForwardCGCGGATCCCATATG-GCCGATACTTACGGCTATBamHI-
NdeI
4011ReverseCCCGCTCGAG-TTTGAGATTTTGAATCAAAGAGXhoI
7354012ForwardCGCGGATCCCATATG-AAGCAGCAGGCGGTCABamHI-
NdeI
4013ReverseCCCGCTCGAG-ATTTCCGTAGCCGAGGGXhoI
7374014ForwardCGCGGATCCCATATG-CACCACGACGGACACGBamHI-
NdeI
4015ReverseCCCGCTCGAG-GTCGTCGCGGCGGGAXhoI
7394016ForwardCGCGGATCCCATATG-GCAAAAAAACCGAACABamHI-
NdeI
4017ReverseCCCGCTCGAG-GAAGAGTTTGTCGAGAATTXhoI
7404018ForwardCGCGGATCCCATATG-GCCAATCCGCCCGAAGBamHI-
NdeI
4019ReverseCCCGCTCGAG-AAACGCGCCAAAATAGTGXhoI
7414020ForwardCGCGGATCCCATATG-TGCAGCAGCGGAGGGBamHI-
NdeI
4021ReverseCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI
7434022ForwardCGCGGATCCCATATG-GACGGTGTTGTGCCTGTTBamHI-
NdeI
4023ReverseCCCGCTCGAG-CTTACGGATCAAATTGACGXhoI
7454024ForwardCGCGGATCCCATATG-TTTTGGCAACTGACCGBamHI-
NdeI
4025ReverseCCCGCTCGAG-CAAATCAGATGCCTTTAGGXhoI
7464026ForwardCGCGGATCCCATATG-TCCGAAAACAAACAAAACBamHI-
NdeI
4027ReverseCCCGCTCGAG-TTCATTCGTTACCTGACCXhoI
7474028ForwardCCGGAATTCTAGCTAGC-CTGACCCCTTGGGEcoRI-
NheI
4029ReverseGCCCAAGCTT-TTTTGATTTTAATTGACTATAGAACHindIII
7494030ForwardCGCGGATCCCATATG-TGCCAGCCGCCGBamHI-
NdeI
4031ReverseCCCGCTCGAG-TTTCAAGCCGAGTATGCXhoI
7504032ForwardCGCGGATCCCATATG-TGTTCGCCCGAACCTGBamHI-
NdeI
4033ReverseCCCGCTCGAG-CTTTTTCCCCGCCGCAAXhoI
7584034ForwardCGCGGATCCCATATG-AACAATCTGACCGTGTTBamHI-
NdeI
4035ReverseCCCGCTCGAG-TGGCTCAATCCTTTCTGCXhoI
7594036ForwardCGCGGATCCGCTAGC-CGCTTCACACACACCACBamHI-
NheI
4037ReverseCCCGCTCGAG-CCAGTTGTAGCCTATTTTGXhoI
7634038ForwardCGCGGATCCCATATG-CTGCCTGAAGCATGGCGBamHI-
NdeI
4039ReverseCCCGCTCGAG-TTCCGCAAATACCGTTTCCXhoI
7644040ForwardCGCGGATCCCATATG-TTTTTCTCCGCCCTGABamHI-
NdeI
4041ReverseCCCGCTCGAG-TCGCTCCCTAAAGCTTTCXhoI
7654042ForwardCGCGGATCCCATATG-TTAAGATGCCGTCCGBamHI-
NdeI
4043ReverseCCCGCTCGAG-ACGCCGACGTTTTTTATTAAXhoI
7674044ForwardCGCGGATCCCATATG-CTGACGGAAGGGGAAGBamHI-
NdeI
4045ReverseCCCGCTCGAG-TTTCTGTACAGCAGGGGXhoI
7684046ForwardCGCGGATCCCATATG-GCCCCGCAAAAACCCGBamHI-
NdeI
4047ReverseCCCGCTCGAG-TTTCATCCCTTTTTTGAGCXhoI
7704048ForwardCGCGGATCCCATATG-TGCGGCAGCGGCGAABamHI-
NdeI
4049ReverseCCCGCTCGAG-GCGTTTGTCGAGATTTTCXhoI
7714050ForwardCGCGGATCCCATATG-TCCGTATATCGCACCTTCBamHI-
NdeI
4051ReverseCCCGCTCGAG-CGGTTCTTTAGGTTTGAGXhoI
7724052ForwardCGCGGATCCCATATG-TTTGCGGCGTTGGTGGBamHI-
NdeI
4053ReverseCCCGCTCGAG-CAATGCCGACATCAAACGXhoI
7744054ForwardCGCGGATCCCATATG-TCCGTTTCACCCGTTCCBamHI-
NdeI
4055ReverseCCCGCTCGAG-TCGTTTGCGCACGGCTXhoI
7904056ForwardCGCGGATCCCATATG-GCAAGAAGGTCAAAAACBamHI-
NdeI
4057ReverseCCCGCTCGAG-GGCGTTGTTCGGATTTCGXhoI
9004058ForwardCGCGGATCCCATATG-CCGTCTGAAATGCCGBamHI-
NdeI
4059ReverseCCCGCTCGAG-ATATGGAAAAGTCTGTTGTCXhoI
9014060ForwardCGCGGATCCCATATG-CCCGATTTTTCGATGBamHI-
NdeI
4061ReverseCCCGCTCGAG-AAAATGGAACAATACCAGGXhoI
9024062Forward.CCGGAATTCTACATATG-TTGCACTTTCAAAGGATAATCEcoRI-
2NdeI
4063ReverseCCCGCTCGAG-AAAAATGTACAATGGCGTACXhoI
9034064ForwardCCGGAATTCTAGCTAGC-CAGCGTCAGCAGCACATEcoRI-
NheI
4065ReverseCCCGCTCGAG-GAAACTGTAATTCAAGTTGAAXhoI
9044066ForwardAAAAAAGGTACC-ATGATGCAGCACAATCGTTTCKpn I
4067ReverseAAACTGCAG-TTAATATCGATAGGTTATATGPst I
904a4068ForwardAAAAAAGAATTC-CGGCTCGGCATTGTGCAGATGTTGCAEco RI
4069ReverseAAACTGCAG-TTAATATCGATAGGTTATATGPst I
9054070ForwardCGCGGATCCCATATG-AACAAAATATACCGCATCBamHI-
NdeI
4071ReverseCCCGCTCGAG-CCACTGATAACCGACAGATXhoI
9074072ForwardCGCGGATCCCATATG-GGCGCGCAACGTGAGBamHI-
NdeI
4073ReverseCCCGCTCGAG-ACGCCACTGCCAGCGXhoI
9084074ForwardAAAGAATTC-GCAGAGTTAGTAGGCGTTAATAAAAATACEco RI
4075ReverseAAACTGCAG-TTAATATGGTTTTGTCGTTCGPst I
9094076ForwardCGCGGATCCCATATG-TGCGCGTGGGAAACTTATBamHI-
NdeI
4077ReverseCCCGCTCGAG-TCGGTTTTGAAACTTTGGTTTTXhoI
9104078ForwardAAAGAATTC-GCATTTGCCGGCGACTCTGCCGAGCGEco RI
4079ReverseAAACTGCAG-TCAGCGATCGAGCTGCTCTTTPst I
9114080ForwardAAAGAATTC-GCTTTCCGCGTGGCCGGCGGTGCEco RI
4081ReverseAAAAAACTGCAG-GTCGACTTATTCGGCGGCTTTTTCCGCPst I
9124082ForwardAAAAAAGAATTC-Eco RI
CAAATCCGTCAAAACGCCACTCAAGTATTGAG
4083ReverseAAAAAACTGCAG-TTACAGTCCGTCCACGCCTTTCGCPst I
9134084ForwardCGCGGATCCCATATG-GAAACCCGCCCCGCBamHI-
NdeI
4085ReverseCCCGCTCGAG-AGGTTGTGTTCCAGGTTGXhoI
9154086ForwardCGCGGATCCCATATG-TGCCGGCAGGCGGAABamHI-
NdeI
4087ReverseCCCGCTCGAG-TTTGAAAATATAGGTATCAGGXhoI
9144088ForwardAAAGAATTC-GACAGAATCGGCGATTTGGAAGCACGEco RI
4089ReverseAAACTGCAG-CTATATGCGCGGCAGGACGCTCAACGGPst I
9164090ForwardCGCGGATCCCATATG-GCAATGATGGCGGCTGBamHI-
NdeI
4091ReverseCCCGCTCGAG-TTTGGCGGCATCTTTCATXhoI
9174092ForwardAAAAAAGAATTC-CCTGCCGAAAAACCGGCACCGGCEco RI
4093ReverseAAAAAACTGCAG-TTATTTCCCCGCCTTCACATCCTGPst I
9194094ForwardCGCGGATCCCATATG-TGCCAAAGCAAGAGCATCBamHI-
NdeI
4095ReverseCCCGCTCGAG-CGGGCGGTATTCGGGXhoI
9204096ForwardCGCGGATCCCATATG-CACCGCGTCTGGGTCBamHI-
NdeI
4097ReverseCCCGCTCGAG-ATGGTGCGAATGACCGAXhoI
9214098ForwardAAAAAAGAATTC-TTGACGGAAATCCCCGTGAATCCEco RI
4099ReverseAAAAAACTGCAG-TCATTTCAAGGGCTGCATCTTCATPst I
9224100Forward.CGCGGATCCGCTAGC-TGTACGGCGATGGAGGCBamHI-
2NheI
4101ReverseCCCGCTCGAG-CAATCCCGGGCCGCCXhoI
9234102ForwardCGCGGATCCCATATG-TGTTACGCAATATTGTCCCBamHI-
NheI
4103ReverseCCCGCTCGAG-GGACAAGGCGACGAAGXhoI
9254104ForwardCGCGGATCCCATATG-AAACAAATGCTTTTAGCCGBamHI-
NdeI
4105ReverseCCCGCTCGAG-GCCGTTGCATTTGATTTCXhoI
9264106ForwardCGCGGATCCCATATG-TGCGCGCAATTACCTCBamHI-
NdeI
4107ReverseCCCGCTCGAG-TCTCGTGCGCGCCGXhoI
9274108ForwardCGCGGATCCCATATG-TGCAGCCCCGCAGCBamHI-
NdeI
4109ReverseCCCGCTCGAG-GTTTTTTGCTGACGTAGTXhoI
929a4110ForwardAAAAAAGAATTC-CGCGGTTTGCTCAAAACAGGGCTGGGEco RI
4111ReverseAAAAAATCTAGA-TTAAGAAAGACGGAAACTACTGCCXba I
9314112ForwardAAAAAAGAATTC-GCAACCCATGTTTTGATGGAAACEco RI
4113ReverseAAAAAACTGCAG-TTACTGCCCGACAACAACGCGACGPst I
9354114ForwardAAAAAAGAATTC-Eco RI
GCGGATGCGCCCGCGATTTTGGATGACAAGGC
4115ReverseAAAAAACTGCAG-TCAAAACCGCCAATCCGCCGACACPst I
9364116ForwardCGCGGATCCCATATG-GCCGCCGTCGGCGCBamHI-
NdeI
4117ReverseCCCGCTCGAG-GCGTTGGACGTAGTTTTGXhoI
9374118ForwardAAAAAAGAATTC-CCGGTTTACATTCAAACCGGCGCAACEco RI
4119ReverseAAAAAACTGCAG-TTAAAATGTATGCTGTACGCCAAAPst I
939a4120ForwardAAAAAAGAATTC-GGTTCGGCAGCTGTGATGAAACCEco RI
4121ReverseAAAAAACTGCAG-TTAACGCAAACCTTGGATAAAGTTGGCPst I
9504122ForwardCGCGGATCCCATATG-GCCAACAAACCGGCAAGBamHI-
NdeI
4123ReverseCCCGCTCGAG-TTTAGAACCGCATTTGCCXhoI
9534124ForwardCGCGGATCCCATATG-GCCACCTACAAAGTGGACBamHI-
NdeI
4125ReverseCCCGCTCGAG-TTGTTTGGCTGCCTCGATXhoI
9574126ForwardCGCGGATCCCATATG-TTTTGGCTGGGAACGGGBamHI-
NdeI
4127ReverseCCCGCTCGAG-GTGAGAAAGGTCGCGCXhoI
9584128ForwardCGCGGATCCCATATG-GCCGATGCCGTTGCGBamHI-
NdeI
4129ReverseGCCCAAGCTT-GGGTCGTTTGTTGCGTCHindIII
9594130ForwardCGCGGATCCCATATG-CACCACGACGGACACGBamHI-
NdeI
4131ReverseCCCGCTCGAG-GTCGTCGCGGCGGGAXhoI
9614132ForwardCGCGGATCCCATATG-GCCACAAGCGACGACGBamHI-
NdeI
4133ReverseCCCGCTCGAG-CCACTCGTAATTGACGCXhoI
9724134ForwardAAAAAAGAATTC-Eco RI
TTGACTAACAGGGGGGGAGCGAAATTAAAAAC
4135ReverseAAAAAATCTAGA-TTAAAAATAATCATAATCTACATTTTGXba I
9734136ForwardAAAAAAGAATTC-ATGGACGGCGCACAACCGAAAACEco RI
4137ReverseAAAAAACTGCAG-TTACTTCACGCGGGTCGCCATCAGCGTPst I
9824138ForwardCGCGGATCCCATATG-GCAGCAAAAGACGTACBamHI-
NdeI
4139ReverseCCCGCTCGAG-CATCATGCCGCCCATCCXhoI
9834140ForwardCGCGGATCCCATATG-TTAGCTGTTGCAACAACACBamHI-
NdeI
4141ReverseCCCGCTCGAG-GAACCGGTAGCCTACGXhoI
9874142ForwardCGCGGATCCCATATG-CCCCCACTGGAAGAACBamHI-
NdeI
4143ReverseCCCGCTCGAG-TAATAAACCTTCTATGGGCXhoI
9884144ForwardCGCGGATCCCATATG-TCTTTAAATTTACGGGAAAAAGBamHI-
NdeI
4145ReverseGCCCAAGCTT-TGATTTGCCTTTCCGTTTTHindIII
9894146ForwardCCGGAATTCTACATATG-GTCCACGCATCCGGCTAEcoRI-
NdeI
4147ReverseCCCGCTCGAG-TTTGAATTTGTAGGTGTATTGCXhoI
9904148Forward.CGCGGATCCGCTAGC-TTCAGAGCTCAGCTTBamHI-
2NheI
4149ReverseCCCGCTCGAG-AAACAGCCATTTGAGCGAXhoI
9924150ForwardCGCGGATCCCATATG-GACGCGCCCGCCCGBamHI-
NdeI
4151ReverseCCCGCTCGAG-CCAAATGCCCAACCATTCXhoI
9934152ForwardCGCGGATCCCATATG-GCAATGCTGATTGAAATCABamHI-
NdeI
4153ReverseCCCGCTCGAG-GAACACATCGCGCCCGXhoI
9964154ForwardCGCGGATCCCATATG-TGCGGCAGAAAATCCGCBamHI-
NdeI
4155ReverseCCCGCTCGAG-TCTAAACCCCTGTTTTCTCXhoI
9974156ForwardCCGGAATTCTAGCTAGC-CGGCACGCCGACGTTEcoRI-
NheI
4157ReverseCCCGCTCGAG-GACGGCATCGCTCAGGXhoI
|
\nUnderlined sequences indicate restriction recognition sites.\n
The following DNA and amino acid sequences are identified by titles of the following form: [g, m, or a] [#].[seq or pep], where “g†means a sequence from N. gonorrhoeae, “m†means a sequence from N. meningitidis B, and “a†means a sequence from N. meningitidis A; “#†means the number of the sequence; “seq†means a DNA sequence, and “pep†means an amino acid sequence. For example, “g001.seq†refers to an N. gonorrohoeae DNA sequence, number 1. The presence of the suffix “−1†to these sequences indicates an additional sequence found for the same ORF. Further, open reading frames are identified as ORF #, where “#†means the number of the ORF, corresponding to the number of the sequence which encodes the ORF, and the ORF designations may be suffixed with “.ng†or “.a†, indicating that the ORF corresponds to a N. gonorrhoeae sequence or a N. meningitidis A sequence, respectively. Computer analysis was performed for the comparisons that follow between “g†, “m†, and “a†peptide sequences; and therein the “pep†suffix is implied where not expressly stated.
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1>:
g001.seq
1ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG GTGTCGGCGA ACGAGGTGTC
|
51CGGCAGGGCT TGCGCCCGGA TGGTGCTGGT CATCTGCCAG ACGCTGCCGA
|
101AACGCGATAC TTTAAACGGC TCGGGTACGC ATACTTTACC GGTTTGGGCG
|
151ATTTTGCCGA GGTCGTTGCG CAGCAAATCG ACAATCATCA CGTTTTCGGC
|
201GCGGTTTTTC GGGTCGGTTT GTAACTCGGC GGCGCGGCGT TCGTCTTGTC
|
251CGTCGCCCAA AATCGGCGCG GTGCCTTTCA TCGGTTCGGT GCTGATGGTG
|
301CCGTCTGAAG CGATGTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
|
351CGCGGATTGC CCGGCTTCAT CGGGCAGGTG GGACAATACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 2; ORF 001.ng>:
g001.pep
1MLPQGKAARR VSANEVSGRA CARMVLVICQ TLPKRDTLNG SGTHTLPVWA
|
51ILPRSLRSKS TIITFSARFF GSVCNSAARR SSCPSPKIGA VPFIGSVLMV
|
101PSEAMLRKSS GEKHSVHADC PASSGRWDNT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3>:
m001.seq
1ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
|
51CGGcAssCTT ss.GCTTGGA yGGTGCTGGT CATCTGCCAA ACGCTGCCGA
|
101AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
|
151ATTTTGCCGA GATCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
|
201GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
|
251CGTCGCCCAA AATCGGCGCG GTGCCTTTCA TCGGTTCGGT GCTGATGGTG
|
301CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
|
351CGCGGATTGC CCCTCCGCAT CGGGCAGGTG GGACAAGACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 4; ORF 001>:
m001.pep
  1MLPQGKAARR MSANEVCGXL XAWXVLVICQ TLPKRDTLNG SGTHTVPVWA
|
 51ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
|
101PSEPILRKSS GEKHSVHADC PSASGRWDKT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 5>:
a001.seq
  1ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
|
 51CGGCAAGGCT TGGGCTTGGA TGGTGCTGGT CATCTGCCAA ACGCTGCCGA
|
101AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
|
151ATTTTGCCGA GGTCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
|
201GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
|
251CGTCGCCCAA AATCGGCGCG GTGCCTTTCA TCGGTTCGGT GCTGATGGTG
|
301CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
|
351CGCGGATTGC CCTTGTGCAT CGGGCAGGTG GGACAAAACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 6; ORF 001.a>:
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. Gonorrhoeae
ORF 001 shows 89.3% identity over a 131 aa overlap with a predicted ORF (ORF 001.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 7>:
g003.seq
  1ATGGTCGTAT TCGTGGCTGA AGGCGTATTC GGTCGCGCTG TTTTGGGTCA
|
 51CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
|
101TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGCTTTGGT
|
151TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATGTCGATG TGGCAGTAGC
|
201CGTTGGGGTT TTTAATCAGG TAGTCCTGAT GGTATTCCTC GGCGTCGTAG
|
251AAGTTTTTCA GCGGTTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
|
301CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG
|
351TGTAGTACAC GCCGCTGCGG TATTGCGTGC CGGTGTCGTT ACCCTGTTTG
|
401TTGAGGCTGG TCGGATCAAC GACGCGGAAA TAATATTGCA GGATGTCGTC
|
451CAGgCTGagt TTGTCGGCAT CGTaggtcac tTTGACGGTC TCGGCATGAC
|
501CCGTATGGCG GTaggacact tctTCgtanc TcGGGtTTTC CGTGttGCCG
|
551TTGGCgttac cGGATACCGC gtcaACCACG CCGTcgatgc gttggaAATa
|
601ggCTTCCAAg ccccaaaagc agccgccggc gaagtaaatg gtgcccgtgt
|
651tcatgattGC TGa
This corresponds to the amino acid sequence <SEQ ID 8; ORF 003.ng>:
g003.pep
  1MVVFVAEGVF GRAVLGHLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGFG
|
 51FARQRFVGFA DVDVAVAVGV FNQVVLMVFL GVVEVFQRFV FNNEGQLVFL
|
101LLAFEGGGDD GFFGGVGVVH AAAVLRAGVV TLFVEAGRIN DAEIILQDVV
|
151QAEFVGIVGH FDGLGMTRMA VGHFFVRVFR VAVGVTGYRV NHAVDALEIG
|
201FQAPKAAAGE VNGARVHDC
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 9>:
m003.sq
  1ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
|
 51CTTGsTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
|
101TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGGG CGGTCTTGGT
|
151TTTGCCCGGC AGCGGTTCGT CAGCkTTGCG GATGTCGATG TGGCAGTAGC
|
201CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
|
251AAGTTTTtCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
|
301CTGCTCGCGT TTGAGGGCGk CGGCGATGAC GGCTTTTTCG kCGGGGTCGG
|
351TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
|
401TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
|
451TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC
|
501CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG
|
551TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA
|
601GGCTTCCAAG CCCCAGAAGC AGCg.CCGGC GAGGTAAATG GTGCGCGTGT
|
651TCATGATTTT TGA
This corresponds to the amino acid sequence <SEQ ID 10; ORF 003>:
m003.pep Length: 221
  1MVVFVAEGIF GRAVLGNLXL LFGQGAFEFG VTRFFIRCRV EAFALRGGLG
|
 51FARQRFVSXA DVDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL
|
101LLAFEGXGDD GFFXGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV
|
151*AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI
|
201GFQAPEAAXG EVNGARVHDF *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 11>:
a003.seq
  1ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
|
 51CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
|
101TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGTCTTGGT
|
151TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATATCGATG TGGCAGTAGC
|
201CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
|
251AAGTTTTTCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
|
301CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG
|
351TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
|
401TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
|
451TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC
|
501CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG
|
551TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA
|
601GGCTTCCAAG CCCCAGAAGC AGCCGCCGGC GAGGTAGATG GTGCGCGTGT
|
651TCATGATTTT TGA
This corresponds to the amino acid sequence <SEQ ID 12; ORF 003.a>:
a003.pep
  1MVVFVAEGIF GRAVLGNLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGLG
|
 51FARQRFVGFA DIDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL
|
101LLAFEGGGDD GFFGGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV
|
151*AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI
|
201GFQAPEAAAG EVDGARVHDF *
\nm003/a003 95.9% identity over a 220 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. Gonorrhoeae
ORF 003 shows 88.6% identity over a 219 aa overlap with a predicted ORF (ORF 003.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 13>:
g004.seq
  1ATGgtagAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT
|
 51GCGCCCATGC CAACAagtga gccaAAtgtT CGGCGGCAGG GCCTacgatT
|
101TCCGCGCCGA TAAagcggcc gGTGgctTTT tcgGCataca ggcgcaTatg
|
151gCCTTTGTTT ACCAgcatca cgcggctgcg accttgaTTT TTGAACGATA
|
201CTTCGCCgaT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG
|
251TATTTCAAAC CGACAAAGCC GATTTGCgga ctggtaaACA CCACGCCAAT
|
301GGTgctgcgg cGCAAACCGC TGCCGATATt cgGgtagcgg ccccgcgtta
|
351ttgcccggca atcttacctt ggtcggcggc ttcatGCAGC AGGGGCagtt
|
401ggttggacgc gtcgcccgca ataAAGATAT GCGGAATgct ggtCTGCATg
|
451gtCAGCGGAT CGGCAACGGG tacgccgcgc gcgtctttgT CGATATTGAT
|
501GTTTTCCAAA CCGATATtgT CAACGTTCGG ACGGCgACCT ACGGCTGCCA
|
551ACATATATTC GGCAACAAAT ACGCCTTTTT CGCCATCCTG CTCCCAATGG
|
601ACTtctACAT TGCCGTCTGC GTCGAGTTTG ACCTCGGTTT TAGCATCCAG
|
651ATGCAGTTTC AATtctTCTC CGAACACGGC TTTCGCCTCG TCTGAAACAA
|
701CGGGGTCGGA AATGCCGCCG ATGATTCCGC CCAAACCGAA AATTTCAACT
|
751TTCACACCCA AACGGTGCAA TGCCTGA
This corresponds to the amino acid sequence <SEQ ID 14; ORF 004.ng>:
g004.pep
  1MVERHIQHLR NGHLHLMRPC QQVSQMFGGR AYDFRADKAA GGFFGIQAHM
|
 51AFVYQHHAAA TLIFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAN
|
101GAAAQTAADI RVAAPRYCPA ILPWSAASCS RGSWLDASPA IKICGMLVCM
|
151VSGSATGTPR ASLSILMFSK PILSTFGRRP TAANIYSATN TPFSPSCSQW
|
201TSTLPSASSL TSVLASRCSF NSSPNTAFAS SETTGSEMPP MIPPKPKIST
|
251FTPKRCNA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 15>:
m004.seq
  1ATGGTAGAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT
|
 51GTGCCCAAGC CAACAGGTGC GCCAAATGTT CGGCGGCAGG GCCTACGATT
|
101TCCGCGCCGA TAAAGCGGCC GGTGGCTTTT TCGGCATACA GGCGCATATG
|
151GCCTTTGTTC ACCAGCATCA CGCGGCTGCG GCCTTGGTTT TTGAACGATA
|
201CTTCGCCGAT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG
|
251TATTTCAGAC CGACAAAGCC GATTTGCGGA CTGGTAAACA CCACGCCGAT
|
301GGTGCTGCGC CGCAAACCGC CGCCGATATT CGGGTAGCGG CCGCGTTATC
|
351GCCGGCAATC TTGCCTTGGT CGGCAGCTTC ATGCAGCAGA GGCAGTTGGT
|
401TGGACGCATC GCCTGCGATG AAGATATGCG GAATACTGGT CTGCATGGTC
|
451AGCGGGTCGG CAACAGGTAC GCCGCGCGCA TCTTTTTCGA TATTGATATT
|
501TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCCACG GCTGCCAGCA
|
551TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT
|
601TCTACATTGC CGTCTGCATC GAGTTTGACC TCGGTTTTAG CATCCAGATG
|
651CAGTTTCAAT TCTTCGCCGA ACACGGCGTT CGCCTCGTCT GAAACGACGG
|
701GGTCGGAAAT GCCGCCGATG ATTCCGCCCA AACCGAAAAT TTCAACTTTC
|
751ACGCCCAAAC GGTGCAATGC CTGA
This corresponds to the amino acid sequence <SEQ ID 16; ORF 004>:
m004.pep
  1MVERHIQHLR NGHLHLMCPS QQVRQMFGGR AYDFRADKAA GGFFGIQAHM
|
 51AFVHQHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAD
|
101GAAPQTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAM KICGILVCMV
|
151SGSATGTPRA SFSILIFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT
|
201STLPSASSLT SVLASRCSFN SSPNTAFASS ETTGSEMPPM IPPKPKISTF
|
251TPKRCNA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>:
a004.seq
  1ATGGTAGAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT
|
 51GTGCCCAAGC CAACAGGTGC GCCAAATGTT CGGCGGCCGG ACCTACGATT
|
101TCTGCGCCGA TGAAGCGGCC GGTGGCTTTT TCGGCATACA GGCGCATATG
|
151GCCTTTGTTT ACCAGCATCA CGCGGCTGCG GCCTTGGTTT TTGAACGATA
|
201CTTCGCCGAT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG
|
251TATTTCAAAC CGACAAAGCC GATTTGCGGA CTGGTGAACA CTACGCCGAT
|
301GGTGCTGCGG CGCAAACCGC CGCCGATATT CGGGTAGCGG CCGCGTTATC
|
351GCCGGCAATC TTGCCTTGGT CGGCGGCTTC ATGCAGCAGG GGCAGTTGGT
|
401TGGACGCGTC GCCCGCAATA AAGATATGCG GAATACTGGT CTGCATAGTC
|
451AGCGGATCGG CAACGGGTAC GCCGCGCGCA TCTTTTTCGA TATTGATGTT
|
501TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCTACG GCTGCCAGCA
|
551TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT
|
601TCTACATTGC CGTCTGCGTC GAGTTTGGCC TCGGTTTTAG CATCCAAATG
|
651CAGTTTCAAT TCTTCACCGA ACACGGCTTT CGCCTCGTCT GAAACGACGG
|
701GGTCGGAAAT GCCGCCGATG ATGCCACCCA AACCGAAAAT TTCAACTTTC
|
751ACGCCCAAAC GGTGCAATGC CTGA
This corresponds to the amino acid sequence <SEQ ID 18; ORF 004.a>:
a004.pep
  1MVERHIQHLR NGHLHLMCPS QQVRQMFGGR TYDFCADEAA GGFFGIQAHM
|
 51AFVYQHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGEHYAD
|
101GAAAQTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAI KICGILVCIV
|
151SGSATGTPRA SFSILMFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT
|
201STLPSASSLA SVLASKCSFN SSPNTAFASS ETTGSEMPPM MPPKPKISTF
|
251TPKRCNA*
\nm004/a004 94.9% identity over a 257 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. Gonorrhoeae
ORF 004 shows 93.4% identity over a 258 aa overlap with a predicted ORF (ORF 004.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 19>:
g005.seq
   1ATGGGGATGG ACAATATTGA TATGTTCATG CCTGAACAAG AGGAAATCCA
|
  51ATCAATGTGG AAAGAAATTT TACTGAATTA CGGTATTTTC CTGCTCGAAC
|
 101TGCTTACCGT GTTCGGCGCA ATTGCGCTGA TTGTGTTGGC TATCGTACAG
|
 151AGTAAGAAAC AGTCGGAAAG CGGCAGTGTC GTACTGACAG ATTTTTCGGA
|
 201AAATTATAAA AAACAGCGGC AATCGTTTGA AACATTCTTT TTAAGCGAGG
|
 251AAGAGACAAA ACATCAGGAA AAAAAAGAAA AGAAAAAGGA AAAGGCGGAA
|
 301GCCAAAGCAG AGAAAAAGCG TTTGAAGGAG GGCGGGGAGA AATCTGCCGA
|
 351AACGCAAAAA TCCCGCCTTT TTGTGTTGGA TTTTGACGGC GATTTGTATG
|
 401CACACGCCGT AGAATCCTTG CGTCATGAGA TTACGGCGGT GCTTTTGATT
|
 451GCCAAGCCTG AAGATGAGGT TCTGCTCAGA TTGGAAAGTC CGGGCGGCGT
|
 501GGTTCACGGT TACGGTTTGG CGGCTTCGCA GCTTAGGCGT TTGCGCGAAC
|
 551GCAATATTCC GCTGAccgtc gccgTCGATA AGGTCGCGGC AAGCGgcggc
|
 601tatatgatgg cgtgtgtgGC GGATAAAATT GTTTCCGCtc cgtttgcggt
|
 651catcggttcg gtgggtgtgg tgGcggaagt gcCGAATATC CAccgCctGT
|
 701TGAAAAAACA TGATATTGAT GTGGATGTGA TGACGGCGGG CGAATTTAAG
|
 751CGCACGGTTA CTTTTATGGG TGAAAATACG GAAAAGGGCA AACAGAAATT
|
 801CCGGCAGGAA CTGGAGGAAA CGCATCAGTT GTTCAAGCAG TTTGTCAGTG
|
 851AAAACCGCCC CGGGTTGGAT ATTGAAAAAA TAGCGACGGG CGAGCATTGG
|
 901TTCGGCCGGC AGGCGTTGGC GTTGAACTTG ATTGACGAGA TTTCGACCAG
|
 951TGATGATTTG TTGTTGAAAG CGTTTGAAAA CAAACAGGtt aTCGAAGTGA
|
1001AATATCAGGA GAAGCGAAGC CTGATCCAGC GCATTGGTTT GCAGGCGGAA
|
1051GCTTCCGTTG AAAAGTTGTT TGCCAAACTT GTCAACCGGC GAGCGGATGT
|
1101GATGTAG
This corresponds to the amino acid sequence <SEQ ID 20; ORF 005.ng>:
g005.pep
1MGMDNIDMFM PEQEEIQSMW KEILLNYGIF LLELLTVFGA IALIVLAIVQ
|
51SKKQSESGSV VLTDFSENYK KQRQSFETFF LSEEETKHQE KKEKKKEKAE
|
101AKAEKKRLKE GGEKSAETQK SRLFVLDFDG DLYAHAVESL RHEITAVLLI
|
151AKPEDEVLLR LESPGGVVHG YGLAASQLRR LRERNIPLTV AVDKVAASGG
|
201YMMACVADKI VSAPFAVIGS VGVVAEVPNI HRLLKKHDID VDVMTAGEFK
|
251RTVTFMGENT EKGKQKFRQE LEETHQLFKQ FVSENRPGLD IEKIATGEHW
|
301FGRQALALNL IDEISTSDDL LLKAFENKQV IEVKYQEKRS LIQRIGLQAE
|
351ASVEKLFAKL VNRRADVM*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 21>:
m005.seq
1ATGGACAATA TTGACATGTT CATGCCTGAA CAAGAGGAAA TCCAATCAAT
|
51GTGGAAAGAA ATTTTACTGA ATTACGGTAT TTTCCTGCTC GAACTGCTTA
|
101CCGTGTTCGG CGCAATTGCG CTGATTGTGT TGGCTATCGT ACAGAGTAAG
|
151AAACAGTCGG AwAGCGGCAG TGTCGTACTG ACGGATTTTT CGGAAAATTA
|
201TAAAAAACAG CGGCAATCGT TTGAAGCATT CTTTTTAAGC GGGGAAGAGG
|
251CACAACATCA GGAAAAAGAG GAAAAGAAAA AGGAAAAGGC GGAAGCCAAA
|
301GCAGAGAAAA A.CGTTTGAA GGAGGGTGGG GAGAAATCTG CCGAAACGCA
|
351nAAATCACGC CTTTTTGTGT TGGANNNNNN NNNNNNNNNN NNNNNNNNNN
|
401NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN
|
451NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN
|
501NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN
|
551NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNGCGAGCGG CGGTTATATG
|
601ATGGCGTGTG TGGCGGATAA AATTGCTTCC GCTCCGTTTG CGATTGTCGG
|
651TTCGGTGGGT GTGGTGGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
|
701AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
|
751GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
|
801GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
|
851GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
|
901CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
|
951TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
|
1001AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
|
1051GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGT A
|
1101G
This corresponds to the amino acid sequence <SEQ ID 22; ORF 005>:
m005.pep
1MDNIDMFMPE QEEIQSMWKE ILLNYGIFLL ELLTVFGAIA LIVLAIVQSK
|
51KQSXSGSVVL TDFSENYKKQ RQSFEAFFLS GEEAQHQEKE EKKKEKAEAK
|
101AEKXRLKEGG EKSAETXKSR LFVLXXXXXX XXXXXXXXXX XXXXXXXXXX
|
151XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXASGGYM
|
201MACVADKIAS APFAIVGSVG VVAEVPNIHR LLKKHDIDVD VMTAGEFKRT
|
251VTFMGENTEK GKQKFRQELE ETHQLFKQFV SENRPQLDIE EVATGEHWFG
|
301RQALALNLID EISTSDDLLL KAFENKQVIE VKYQEKQSLI QRIGLQAEAS
|
351VEKLFAKLVN RRADVM*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 23>:
a005.seq
1ATGGACAATA TTGACATGTT CATGCCTGAA CAAGAGGAAA TCCAATCAAT
|
51GTGGAAAGAA ATTTTACTGA ATTACGGTAT TTTCCTGCTC GAACTGCTTA
|
101CCGTGTTCGG CGCAATTGCG CTGATTGTGT TGGCTATCGT ACAGAGTAAG
|
151AAACAGTCGG AAAGCGGCAG TGTCGTACTG ACGGATTTTT CGGAAAATTA
|
201TAAAAAACAG CGGCAATCGT TTGAAGCATT CTTTTTAAGC GGGGAAGAGG
|
251CAAAACATCA GGAAAAAGAG GAAAAGAAAA AGGAAAAGGC GGAAGCCAAA
|
301GCAGAGAAAA AGCGTTTGAA GGAGGGTGGG GAGAAATCTT CCGAAACGCA
|
351AAAATCCCGC CTTTTTGTGT TGGATTTTGA CGGCGATTTG TATGCACACG
|
401CCGTAGAATC CTTGCGTCAT GAGATTACGG CGGTGCTTTT GATTGCCAAG
|
451CCTGAAGATG AGGTTCTGCT TAGATTGGAA AGTCCGGGCG GCGTGGTTCA
|
501CGGTTACGGT TTGGCGGCTT CGCAGCTTAG GCGTTTGCGC GAACGCAATA
|
551TTCCGCTGAC CGTCGCCGTC GATAAGGTGG CGGCGAGCGG TGGTTATATG
|
601ATGGCGTGTG TGGCGGATAA AATTGTTTCC GCTCCGTTTG CGATTGTCGG
|
651TTCGGTGGGT GTTGTAGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
|
701AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
|
751GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
|
801GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
|
851GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
|
901CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
|
951TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
|
1001AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
|
1051GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGTA
|
1101G
This corresponds to the amino acid sequence <SEQ ID 24; ORF 005.a>:
a005.pep
1MDNIDMFMPE QEEIQSMWKE ILLNYGIFLL ELLTVFGAIA LIVLAIVQSK
|
51KQSESGSVVL TDFSENYKKQ RQSFEAFFLS GEEAKHQEKE EKKKEKAEAK
|
101AEKKRLKEGG EKSSETQKSR LFVLDFDGDL YAHAVESLRH EITAVLLIAK
|
151PEDEVLLRLE SPGGVVHGYG LAASQLRRLR ERNIPLTVAV DKVAASGGYM
|
201MACVADKIVS APFAIVGSVG VVAEVPNIHR LLKKHDIDVD VMTAGEFKRT
|
251VTFMGENTEK GKQKFRQELE ETHQLFKQFV SENRPQLDIE EVATGEHWFG
|
301RQALALNLID EISTSDDLLL KAFENKQVIE VKYQEKQSLI QRIGLQAEAS
|
351VEKLFAKLVN RRADVM*
\nm005/a005 79.2% identity over a 366 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. Gonorrhoeae
ORF 005 shows 77.0% identity over a 366 aa overlap with a predicted ORF (ORF 005.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 25>:
g006.seq
1ATGCTGCTGG TGCTggaatt ttggttCGGc gtGtCGGCGG TGGGCatact
|
51tgCGTTGTTT TTATGGCttt TGCCACGTTT TGCCGCCATC AGCGAAAACC
|
101TGTATTTCCG CCTGAACAAC AGCTTGGAAC gcgACAACCA CTTTATCCGA
|
151AAAGGCGACG AGCGGCAGCT GTACCGCCAT TACGGACTGG TTTCGCGCCT
|
201GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCG
|
251CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
|
301GGCTACGGCA GCGCGGGGCA TATTTATTCG GTCGGCACTT ATCTGTGGAT
|
351GTTTGCCATG AGTTTGGACG ATGTGCCGCG ATTGGTCGAA CAATATTCCA
|
401ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
|
451GCCGGAACTT GA
This corresponds to the amino acid sequence <SEQ ID 26; ORF 006.ng>:
g006.pep
1MLLVLEFWFG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
|
51KGDERQLYRH YGLVSRLRVL ISNREAFGYL CVGAAMGILF GFAFVMMTLK
|
101GYGSAGHIYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
|
151AGT*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 27>:
m006.seq
1ATGCTGCTGG TGCTGGAATT TTGGGTCGGC GTGTCGGCGG TGGGCATACT
|
51TGCGTTGTTT TTATGGCTTT TGCCACGTTT TGCCGCCATC AGCGAAAACC
|
101TGTATTTCCG CCTGAACAAC AGCTTGGAAC GCGACAACCA CTTTATCCGA
|
151AAAGGCGACC GGCGGCAGCT GTACCGCCAT TACGGACTGC TTGCGCGCCT
|
201GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCA
|
251CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
|
301GGCTACAGCA GCGCGGGGCA TGTCTATTCG GTCGGCACTT ATCTGTGGAT
|
351GTTTGCCATG AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
|
401ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
|
451GCCGGAACTTGA
This corresponds to the amino acid sequence <SEQ ID 28; ORF 006>:
m006.pep
1MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
|
51KGDRRQLYRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
|
101GYSSAGHVYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
|
151AGT*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 29>:
a006.seq
1ATGCTGCTGG TGCTGGAATT TTGGGTCGGC GTGTCGGCGG TGGGCATACT
|
51TGCGTTGTTT TTATGGCTTT TGCCACGTTT TGCCGCCATC AGCGAAAACC
|
101TGTATTTCCG CCTGAAGAAC AGCTTGGAAC GCGACAACCA CTTTATCCGA
|
151AAAGGCGACG AGCGGCAGCT GGACCGCCAT TACGGACTGC TTGCGCGCCT
|
201GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCA
|
251CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
|
301GGCTACAGCA GCGCGGGGCA TGTCTATTCG GTCGGCACTT ATCTGTGGAT
|
351GTTTGCCATA AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
|
401ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGAAACG GAACATCAAA
|
451GCCGGAACTT GA
This corresponds to the amino acid sequence <SEQ ID 30; ORF 006.a>:
a006.pep
1MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLKN SLERDNHFIR
|
51KGDERQLDRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
|
101GYSSAGHVYS VGTYLWMFAI SLDDVPRLVE QYSNLKDIGQ RIEWSKRNIK
|
151AGT*
\nm006/a006 96.7% identity over a 153 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. Gonorrhoeae
ORF 006 shows 95.4% identity over a 153 aa overlap with a predicted ORF (ORF 006.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 31>:
g006-1.seq
1ATGTGGAAAA TGTTGAAACA CATAGCCAAA ACCCACCGCA AGCGATTGAT
|
51TGGCACATTT TCCCCGGTCG GACTGGAAAA CCTTTTGATG CTGGGGTATC
|
101CGGTGTTTGG CGGCTGGGCG ATTAATGCCG TGATTGCGGG GAGGGTGTGG
|
151CAGGCGTTGC TGTACGCTTT GGTTGTATTT TTGATGTGGC TGGTCGGTGC
|
201GGCACGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
|
251TCGCCGTGCC GGTTGTGTTG GAACAACGGC AGCGGCAAGT CCCGCATTCA
|
301GCGGTAACTG CACGGGTTGC CCTGTCGCGT GAATTTGTCA GCTTTTTTGA
|
351AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
|
401GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
|
451ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
|
501AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
|
551TCCGAAAAGG CGACGAGCGG CAGCTGTACC GCCATTACGG ACTGGTTTCG
|
601CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
|
651CGGCGCGGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
|
701TCAAAGGCTA CGGCAGCGCG GGGCATATTT ATTCGGTCGG CACTTATCTG
|
751TGGATGTTTG CCATGAGTTT GGACGATGTG CCGCGATTGG TCGAACAATA
|
801TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
|
851TCAAAGCCGG AACTTGA
This corresponds to the amino acid sequence <SEQ ID 32; ORF 006-1.ng>:
g006-1.pep
1MWKMLKHIAK THRKRLIGTF SPVGLENLLM LGYPVFGGWA INAVIAGRVW
|
51QALLYALVVF LMWLVGAARR IADTRTFTRI YTEIAVPVVL EQRQRQVPHS
|
101AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
|
151ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDER QLYRHYGLVS
|
201RLRVLISNRE AFGYLCVGAA MGILFGFAFV MMTLKGYGSA GHIYSVGTYL
|
251WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 33>:
m006-1.seq
1ATGTGGAAAA TGTTGAAACA CATAGCCCAA ACCCACCGCA AGCGATTGAT
|
51TGGCACATTT TCCCTGGTCG GACTGGAAAA CCTTTTGATG CTGGTGTATC
|
101CGGTGTTTGG CGGCCGGGCG ATCAATGCCG TGATTGCGGG GGAGGTGTGG
|
151CAGGCGTTGC TGTACGCTTT GGTTGTGCTT TTGATGTGGC TGGTCGGTGC
|
201GGTGCGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
|
251TCGCCGTGCC GGTCGTGTTG GAACAGCGGC AGCGACAAGT CCCGCATTCG
|
301GCGGTAACTG CGCGGGTTGC CCTGTCGCGT GAGTTTGTCA GCTTTTTTGA
|
351AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
|
401GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
|
451ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
|
501AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
|
551TCCGAAAAGG CGACCGGCGG CAGCTGTACC GCCATTACGG ACTGCTTGCG
|
601CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
|
651CGGCACGGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
|
701TCAAAGGCTA CAGCAGCGCG GGGCATGTCT ATTCGGTCGG CACTTATCTG
|
751TGGATGTTTG CCATGAGTTT GGACGACGTG CCGCGATTGG TCGAACAATA
|
801TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
|
851TCAAAGCCGG AACTTGA
This corresponds to the amino acid sequence <SEQ ID 34; ORF 006-1>:
m006-1.pep
1MWKMLKHIAQ THRKRLIGTF SLVGLENLLM LVYPVFGGRA INAVIAGEVW
|
51QALLYALVVL LMWLVGAVRR IADTRTFTRI YTEIAVPVVL EQRQRQVPHS
|
101AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
|
151ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDRR QLYRHYGLLA
|
201RLRVLISNRE AFGYLCVGTA MGILFGFAFV MMTLKGYSSA GHVYSVGTYL
|
251WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
\nm006-1/g006-1 95.5% identity in 288 aa overlap\n
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 35>:
a006-1.seq(partial)
  1..AGCCAAAACC ACCGCAAGCG ATTGATTGGC ACATTTTTTC TGGTCGGACT
|
 51  GGAAAACCTT TTGATGCTGG TGTATCCGGT GTTTGGCGGC TGGGCGATTA
|
101  ATGCCGTGAT TGCGGGGCAG GCGTGGCAGG CGTTGCTGTA CGCTTTGGTT
|
151  GTGCTTTTGA TGTGGCTGGT CGGTGCGGCG CGGCGGATTG CCGATACGCG
|
201  CACGTTTACG CGGATTTATA CCGAAATCGC CGTGCCGGTT GTGTTGGAAC
|
251  AGCGGCAGCG GCAAGTCCCG CATTCGGCGG TAACTGCGCG GGTTGCCCTG
|
301  TCGCGTGAGT TTGTCAGCTT TTTTGAAGAA CACCTGCCGA TTGCCGCGAC
|
351  ATCCGTCGTA TCCATATTCG GCGCGTGCAT CATGCTGCTG GTGCTGGAAT
|
401  TTTGGGTCGG CGTGTCGGCG GTGGGCATAC TTGCGTTGTT TTTATGGCTT
|
451  TTGCCACGTT TTGCCGCCAT CAGCGAAAAC CTGTATTTCC GCCTGAAGAA
|
501  CAGCTTGGAA CGCGACAACC ACTTTATCCG AAAAGGCGAC GAGCGGCAGC
|
551  TGGACCGCCA TTACGGACTG CTTGCGCGCC TGCGTGTGCT GATTTCCAAC
|
601  CGCGAAGCCT TCGGCTATCT CTGCGTCGGC ACGGCGATGG GTATTTTGTT
|
651  CGGCTTTGCT TTTGTGATGA TGACGCTCAA AGGCTACAGC AGCGCGGGGC
|
701  ATGTCTATTC GGTCGGCACT TATCTGTGGA TGTTTGCCAT AAGTTTGGAC
|
751  GACGTGCCGC GATTGGTCGA ACAATATTCC AATTTGAAAG ACATCGGACA
|
801  ACGGATAGAG TGGTCGAAAC GGAACATCAA AGCCGGAACT TGA
This corresponds to the amino acid sequence <SEQ ID 36; ORF 006-1.a>:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 37>:
g007.seq
  1atgaACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGcgC
|
 51CGCcGCTTCT GCCGccgaca acAGCatcat gaCaAAAGGG CAAAAAGTGT
|
101ACGAATCcAa ctGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC
|
151ACTGCGtTTC CTccgctTTT CCggtcgGac tgtattatga acaAACCGCa
|
201cgTCCtgctg cacagcatgg tcaaaggcAt cgacgggaca ttcaaagtgg
|
251agcggcaaaa cctacgacgg atttatgCcc gcaaccgcca tcagcgATGC
|
301GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
This corresponds to the amino acid sequence <SEQ ID 38; ORF 007.ng>:
g007.pep
  1MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG
|
 51TAFPPLFRSD CIMNKPHVLL HSMVKGIDGT FKVERQNLRR IYARNRHQRC
|
101GHCRRRHLYH ERL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 39>:
m007.seq
  1ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC
|
 51CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
|
101ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
|
151ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
|
201GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
|
251AACGGCAAAA CCTACAACGG ATTCATGCCC GCAACCGCCA TCAGCGATGC
|
301GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
This corresponds to the amino acid sequence <SEQ ID 40; ORF 007>:
m007.pep
  1MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
|
 51TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARNRHQRC
|
101GHCRRRHLYH ERL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 41>:
a007.seq
  1ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC
|
 51CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
|
101ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
|
151ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
|
201GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
|
251AACGGCAAAA CCTACAACGG ATTCATGCCC GCCACTGCCA TCAGCGATGC
|
301GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
This corresponds to the amino acid sequence <SEQ ID 42; ORF 007.a>:
a007.pep
  1MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
|
 51TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARHCHQRC
|
101GHCRRRHLYH ERL*
\nm007/a007 97.3% identity over a 113 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 007 shows 86.7% identity over a 113 aa overlap with a predicted ORF (ORF 007.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 43>:
g007-1.seq (partial)
  1ATGAACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGCGC
|
 51CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
|
101ACGAATCCAA CTGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC
|
151ACTGCGTTTC CTCCGCTTTT CCGGTCGGAC TATATTATGA ACAAACCGCA
|
201CGTCCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA
|
251ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG
|
301GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG
|
351CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAGGC AAAAAAAAC.
This corresponds to the amino acid sequence <SEQ ID 44; ORF 007-1.ng>:
g007-1.pep (partial)
  1MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG
|
 51TAFPPLFRSD YIMNKPHVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
|
101DIAAVATYIM NAFDNGGGSV TEKDVKQAKGKKN...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 45>:
m007-1.seq
  1ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC
|
 51CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
|
101ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
|
151ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
|
201GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA
|
251ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG
|
301GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG
|
351CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAGC AAAAAAAACT
|
401AA
This corresponds to the amino acid sequence <SEQ ID 46; ORF 007-1>
m007-1.pep
  1MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
|
 51TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
|
101DIAAVATYIM NAFDNGGGSV TEKDVKQAKS KKN*
\nm007-1/g007-1 91.7% identity in 133 aa overlap\n
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 47>:
a007-1.seq (partial)
  1ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC
|
 51CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
|
101ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
|
151ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
|
201GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA
|
251ACGGCAAAAC CTACAACGGA TTCATGCCCG CCACTGCCAT CAGCGATGCG
|
301GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG
|
351CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAAC AAAAAA..
This corresponds to the amino acid sequence <SEQ ID 48; ORF 007-1.a>:
a007-1.pep (partial)
  1MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
|
 51TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
|
101DIAAVATYIM NAFDNGGGSV TEKDVKQAKN KK..
\nm007-1/a007-1 98.5% identity in 132 aa overlap\n
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 49>:
g008.seq
  1ATGAACAACA GACATTTTGC CGTCAtcgCC TTGGGCAGCA ACCTTGACAA
|
 51CCCCGCACAA CAAATacgcg gcgcattaga cgcgctctcg tcccatcctg
|
101acatccggct tgaaCaggtt tcctcactgt aTatgaccgc acctgtcggt
|
151tacgAcaaTC agcccgATTT CATCaatgcc gTCTgcaccg TTTCCACCAC
|
201CtTGGACGGC ATTGcccTGC TTGCCgaACT CAAccgTATC GAAGCCGATT
|
251TCGGACGCGA aCGCAGTTTC CGCAATGCAC CGCGCACATT GGATTTGGAC
|
301ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGCC TTACCCTGCC
|
351GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
|
401TCCTCCCTGA TTTTATTTTG GGAAAATACG GAAAGGTTGT CGAATTGTCA
|
451AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGACA GGTAA
This corresponds to the amino acid sequence <SEQ ID 50; ORF 008.ng>:
g008.pep
  1MNNRHFAVIA LGSNLDNPAQ QIRGALDALS SHPDIRLEQV SSLYMTAPVG
|
 51YDNQPDFINA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
|
101IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKYGKVVELS
|
151KRLGNQGIRL LPDR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 51>:
m008.seq
  1ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA
|
 51CCCTGCTCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG
|
101ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT
|
151TACGACAATC AGCCCGATTT TGTCAATGCC GTCTGCACCG TTTCCACCAC
|
201TCTGGACGGC ATTGCCyTGC TTGCCGAACT CAACCGTATC GAGGCTGATT
|
251TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GkATTTGGAC
|
301ATTATCGACT TTGACGGCAT CTCCAGCGAC GACACsCGAC TcACCtTGCC
|
351GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATCCGCCCT TTGGCAGAAA
|
401TCCTCCCTGA TTTTGTTTTA GGAAAACACG GAAAGGTTGC CGAATTGTCA
|
451AAACGGyTGG GCAATCAAGG TATCCGTCTT TTACCGGACA GGTAATT
This corresponds to the amino acid sequence <SEQ ID 52; ORF 008>:
m008.pep
  1MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQAS SLYMTAPVG
|
 51YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSFR NAPRTLXLD
|
101IIDFDGISSD DTRLTLPHPR AHERSFVIRP LAEILPDFVLG KHGKVAELS
|
151KRLGNQGIRL LPDR*
The following partial DNA sequence was identified in N. meningitidis<SEQ ID 53>:
a008.seq
  1ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA
|
 51CCCTGCCCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG
|
101ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT
|
151TACGACAATC AGCCCGATTT CGTCAATGCC GTCTGCACCG TTTCCACCAC
|
201CTTGGACGGC ATTGCCCTGC TTGCCGAACT CAACCGTATC GAAGCCGATT
|
251TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GGATTTGGAC
|
301ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGAC TCACCCTGCC
|
351GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
|
401TCCTCCCTGA TTTTATTTTG GGAAAACACG GAAAGGTTGC CGAATTGTCA
|
451AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGATA AGTAA
This corresponds to the amino acid sequence <SEQ ID 54; ORF 008.a>:
a008.pep
  1MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG
|
 51YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
|
101IIDFDGISSD PRLTLPHPRA HERSFVIRPL LAEILPDFIL GKHGKVAELS
|
151KRLGNQGIRL LPDK*
\nm008/a008 97.6% identity over a 164 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 008 shows 92.7% identity over a 164 aa overlap with a predicted ORF (ORF008.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 55>:
g009.seq
  1ATGCCCCGCG CTGCCGTAGC CTTTGAGCGT CATCATCACA AAAGCAAAGC
|
 51CGAACAAAAT ACCCATCGCC GCGCCGACGC AGAGATAGCC GAAGGCTTCG
|
101CGGTTGGAAA TCAGCACACG CAGGCGCGAA ACCAGTCCGT AATGGCGGTA
|
151CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTcg cGTTCCAAGC
|
201TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
|
251AaaaGCCATA A
This corresponds to the amino acid sequence <SEQ ID 56; ORF 009.ng>:
g009.pep
 1MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARNQSVMAV
|
51QLPLVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 57>:
m009.seq
  1ATGCCCCGCG CTGCTGTAGC CTTTGAGCGT CATCATCACA AAAGCAAAGC
|
 51CGAACAAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
|
101CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTA
|
151CAGCTGCCGC CGGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
|
201TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
|
251AAAAGCCATA A
This corresponds to the amino acid sequence <SEQ ID 58; ORF 009>:
m009.pep
 1MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV
|
51QLPPVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 009 shows 97.7% identity over a 86 aa overlap with a predicted ORF (ORF 009.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 59>:
a009.seq
  1ATGCCCCGCG CTGCTGTAGC CTTTGAGCGT CATCATCACA AAAGCAAAGC
|
 51CGAACAAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
|
101CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTC
|
151CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
|
201TGTTCTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
|
251AAAAGCCATA A
This corresponds to the amino acid sequence <SEQ ID 60; ORF 009.a>:
a009.pep
 1MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV
|
51QLPLVAFSDK VVVAFQAVLQ AEIQVFADGG KTWQKP*
\nm005/a009 97.7% identity over a 86 aa overlap\n
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 61>:
g010.seq
   1ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGCGG
|
  51TGCAGGTTTA CGTGCAGCCC TCCAATTATC CAAATCCGGT TTGAATTGTG
|
 101CCGTTTTGTC TAAAGTGTTC CCGACCCGCT CGCATACCGT AGCGGCGCAG
|
 151GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAGGACC GTTGGGACTG
|
 201GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGCTGGGC GACCAAGATG
|
 251CGATTGAGTT TATGTGTCGC GCTGCGCCTG AAGCGGTGAT TGAGTTGGAA
|
 301CACATGGGTA TGCCTTTTGA CCGCGTTGAA AGCGGCAAAA TTTATCAGCG
|
 351TCCTTTCGGC GGACATACTG CCGAACATGG TAAACGTGCG GTAGAACGTG
|
 401CATGTGCGGT TGCCGACCGT ACCGGTCATG CGATGTTGCA TACTTTGTAC
|
 451CAACAAAACG TCCGTGCCAA TACACAATTC TTTGTGGAAT GGACGGCGCA
|
 501AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
|
 551AAATGGAAAC GGGCGAAGTT TATATTTTCC ACGCCAAGGC CGTGATGTTT
|
 601GCTACCGGTG GCGGCGGTCG TATTTATGCT TCTTCTACCA ATGCTTATAT
|
 651GAATACCGGT GACGGTTTGG GCATTTGCGC CCGTGCGGGC ATTCCGTTGG
|
 701AAGATATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GGGTGCGGGC
|
 751GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAacgc
|
 801cgacggcgaA cgcTTTATGG AAcgctatgc GCcgACCGta aAagaCTTGG
|
 851CTTCTCGCga cgtGGTTTCA CgcgcGatgG CGatggaAAt ctatgaaggt
|
 901cgcggctgTG GtaaAAAcaA agaCCacgtC TTACTGAAAA TCGACcAtAt
|
 951cggtGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
|
1001TTCagtttgc cGGTATCGAT CCGATTAAAG ACCCGATTcc ggttgTGCCG
|
1051ACTACCCACT ATATGATGGG CGGCATTCcg aCCAATTATC ACGGTGAAGT
|
1101TGTTGTTCCG CAAGGCGACG AGTACGAAGT ACCTGTAAAA GGCCTGTATG
|
1151CCGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGTTTGGGT
|
1201ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga
This corresponds to the amino acid sequence <SEQ ID 62; ORF 010.ng>:
g010.pep
  1MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
|
 51GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
|
101HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
|
151QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
|
201ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
|
251VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
|
301RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
|
351TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
|
401TNSLLDLVVF RPTPR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>:
m010.seq (PARTIAL)
  1..nTCCAATTAT CCAAATCCGG TCTGAATTGT GCCGTTTTGT CTAAAGTGTT
|
 51  CCCGACCCGT TCGCATACCG TAGCGGCGCA GGGCGGTATT TCCGCCTCTn
|
101  TGGGTAATGT GCAGGAAGAC CGTTGGGACT GGCACATGTA CGATACCGTG
|
151  AAAGGTTCCG ACTGGTTGGG CGACCAAGAT GCGATTGAGT TTATGTGCCG
|
201  CGCCGCGCCT GAAGCCGTAA TTGAGTTGGA ACACATGGGT ATGCCTTTTG
|
251  ACCGTGTGGA AAGCGGTAAA ATTTATCAGC GTCCTTTCGG CGGCCATACT
|
301  GCCGAACACG GTAAACGCGC GGTAGAACGC GyCTGTGCGG TTGCCGACCG
|
351  TACAGGTCAT GCGATGCTGC ATACTTTGTA CCAACAAAAC GTCCGTGCCA
|
401  ATACGCAATT CTTTGTGGAA TGGACGGCAC AAGATTTGAT TCGTGATGAA
|
451  AACGGCGATG TCGTCGGCGT AACCGCCATG GAAATGGAAA CCGGCGAAgT
|
501  TTATATTTTC CACGCTAAAG CTGTGATGTT TGCTACCGGC GGCGGCGGTC
|
551  GTATTTATGC GTCTTCTACC AATGCCTATA TGAATACCGG CGATGGTTTG
|
601  GGTATTTGTG CGCGTGCAGG TATCCCGTTG GAAGACATGG AATTCTGGCA
|
651  ATTCCAGCCG ACCGGCGTGG CGGGTGCGGG CGTGTTGATT ACCGAA....
This corresponds to the amino acid sequence <SEQ ID 64; ORF 010>:
m010.pep (PARTIAL)
  1..XQLSKSGLNC AVLSKVFPTR SHTVAAQGGI SASXGNVQED RWDWHMYDTV
|
 51  KGSDWLGDQD AIEFMCRAAP EAVIELEHMG MPFDRVESGK IYQRPFGGHT
|
101  AEHGKRAVER XCAVADRTGH AMLHTLYQQN VRANTQFFVE WTAQDLIRDE
|
151  NGDVVGVTAM EMETGEVYIF HAKAVMFATG GGGRIYASST NAYMNTGDGL
|
201  GICARAGIPL EDMEFWQFQP TGVAGAGVLI TE...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>:
a010.seq
   1ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG
|
  51TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG
|
 101CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG
|
 151GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
|
 201GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
|
 251CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
|
 301CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
|
 351TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
|
 401CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
|
 451CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA
|
 501AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
|
 551AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT
|
 601GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT
|
 651GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG
|
 701AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC
|
 751GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC
|
 801CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG
|
 851CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT
|
 901CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT
|
 951CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
|
1001TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG
|
1051ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT
|
1101TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG
|
1151CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT
|
1201ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG
|
1251CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
|
1301ATGCCGGCGA ACTGACCCGC CAACGTATCG AGCGTTTGGA CAATCAAACT
|
1351GATGGTGAAA ACGTTGATGC ATTGCGCCGC GAACTGCAAC GCTCCGTACA
|
1401ATTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC
|
1451GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC
|
1501AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA
|
1551CCTAATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG
|
1601AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA
|
1651AACTGGATGA AACATACGCT GTACCATTCA GATGCCAATA CCTTGTCCTA
|
1701CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA
|
1751AGCGCGTTTA TTGA
This corresponds to the amino acid sequence <SEQ ID 66; ORF 010.a>:
a010.pep
  1MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ
|
 51GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
|
101HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
|
151QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
|
201ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
|
251VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
|
301RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
|
351TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
|
401TNSLLDLVVF GKAAGDSMIK FIKEQSDWKP LPANAGELTR QRIERLDNQT
|
451DGENVDALRR ELQRSVQLHA GVFRTDEILS KGVREVMAIA ERVKRTEIKD
|
501KSKVWNTARI EALELDNLIE VAKATLVSAE ARKESRGAHA SDDHPERDDE
|
551NWMKHTLYHS DANTLSYKPV HTKPLSVEYI KPAKRVY*
\nm010/a010 98.7% identity over a 231 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 010 shows 98.7% identity over a 231 aa overlap with a predicted ORF (ORF 010.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 67>:
g010-1.seq..
   1ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGCGG
|
  51TGCAGGTTTA CGTGCAGCCC TCCAATTATC CAAATCCGGT TTGAATTGTG
|
 101CCGTTTTGTC TAAAGTGTTC CCGACCCGCT CGCATACCGT AGCGGCGCAG
|
 151GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAGGACC GTTGGGACTG
|
 201GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGCTGGGC GACCAAGATG
|
 251CGATTGAGTT TATGTGTCGC GCTGCGCCTG AAGCGGTGAT TGAGTTGGAA
|
 301CACATGGGTA TGCCTTTTGA CCGCGTTGAA AGCGGCAAAA TTTATCAGCG
|
 351TCCTTTCGGC GGACATACTG CCGAACATGG TAAACGTGCG GTAGAACGTG
|
 401CATGTGCGGT TGCCGACCGT ACCGGTCATG CGATGTTGCA TACTTTGTAC
|
 451CAACAAAACG TCCGTGCCAA TACACAATTC TTTGTGGAAT GGACGGCGCA
|
 501AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
|
 551AAATGGAAAC GGGCGAAGTT TATATTTTCC ACGCCAAGGC CGTGATGTTT
|
 601GCTACCGGTG GCGGCGGTCG TATTTATGCT TCTTCTACCA ATGCTTATAT
|
 651GAATACCGGT GACGGTTTGG GCATTTGCGC CCGTGCGGGC ATTCCGTTGG
|
 701AAGATATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GGGTGCGGGC
|
 751GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAACGC
|
 801CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG
|
 851CTTCTCGCGA CGTGGTTTCA CGCGCGATGG CGATGGAAAT CTATGAAGGT
|
 901CGCGGCTGTG GTAAAAACAA AGACCACGTC TTACTGAAAA TCGACCATAT
|
 951CGGTGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
|
1001TTCAGTTTGC CGGTATCGAT CCGATTAAAG ACCCGATTCC GGTTGTGCCG
|
1051ACTACCCACT ATATGATGGG CGGCATTCCG ACCAATTATC ACGGTGAAGT
|
1101TGTTGTTCCG CAAGGCGACG AGTACGAAGT ACCTGTAAAA GGCCTGTATG
|
1151CCGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGTTTGGGT
|
1201ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga
This corresponds to the amino acid sequence <SEQ ID 68; ORF 010-1.ng>:
g010-1.pep
  1MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
|
 51GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
|
101HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
|
151QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
|
201ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
|
251VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
|
301RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
|
351TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
|
401TNSLLDLVVF RPTPR*
|
g010-1 (SEQ ID 68)/P10444 (SEQ ID 4158)
sp|P10444|DHSA_ECOLI SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT
gnl|PID|d101527.0 (D90711) Succinate dehydrogenase, flavoprotein [Escherichia coli] gi|1786942
(AE000175) succinate dehydrogenase flavoprotein subunit [Escherichia coli] Length = 588
Score = 1073 (495.6 bits), Expect = 6.7e−169, Sum P(2) = 6.7e−169
Identities = 191/303 (63%), Positives = 238/303 (78%)
Query:  1 MGFPVRKFDAVIVXXXXXXXXXXXXXSKSGLNCAVLSKVFPTRSHTVAAQGGISASLGNV 60
    M  PVR+FDAV++             S+SG  CA+LSKVFPTRSHTV+AQGGI+ +LGN
Sbjct:  1 MKLPVREFDAVVIGAGGAGMRAALQISQSGQTCALLSKVFPTRSHTVSAQGGITVALGNT 60
|
Query: 61 QEDRWDWHMYDTVKGSDWLGDQDAIEFMCRAAPEAVIELEHMGMPFDRVESGKIYQRPFG 120
     ED W+WHMYDTVKGSD++GDQDAIE+MC+  PEA++ELEHMG+PF R++ G+IYQRPFG
Sbjct: 61 HEDNWEWHMYDTVKGSDYIGDQDAIEYMCKTGPEAILELEHMGLPFSRLDDGRIYQRPFG 120
|
Query:121 GHTAEHGKRAVERACAVADRTGHAMLHTLYQQNVRANTQFFVEWTAQDLIRDENGDVVGV 180
    G +   G     R  A ADRTGHA+LHTLYQQN++ +T  F EW A DL+++++G VVG
Sbjct:121 GQSKNFGGEQAARTAAAADRTGHALLHTLYQQNLKNHTTIFSEWYALDLVKNQDGAVVGC 180
|
Query:181 TAMEMETGEVYIFHAKAVMFATGGGGRIYASSTNAYMNTGDGLGICARAGIPLEDMEFWQ 240
    TA+ +ETGEV  F A+A + ATGG GRIY S+TNA++NTGDG+G+  RAG+P++DME WQ
Sbjct:181 TALCIETGEVVYFKARATVLATGGAGRIYQSTTNAHINTGDGVGMAIRAGVPVQDMEMWQ 240
|
Query:241 FHPTGVAGAGVLITEGVRGEGGILLNADGERFMERYAPTVKDLASRDVVSRAMAMEIYEG 300
    FHPTG+AGAGVL+TEG RGEGG LLN  GERFMERYAP  KDLA RDVV+R++ +EI EG
Sbjct:241 FHPTGIAGAGVLVTEGCRGEGGYLLNKHGERFMERYAPNAKDLAGRDVVARSIMIEIREG 300
|
Query:301 RGC 303
    RGC
Sbjct:301 RGC 303
|
Score = 249 (115.0 bits), Expect = 6.7e−169, Sum P(2) = 6.7e−169
Identities = 53/102 (51%), Positives = 62/102 (60%)
Query:309 HVLLKIDHIGAEKIMEKLPGIREISIQFAGXXXXXXXXXXXXTTHYMMGGIPTNYHGEVV 368
    H  LK+DH+G E +  +LPGI E+S  FA             T HYMMGGIPT   G+ +
Sbjct:310 HAKLKLDHLGKEVLESRLPGILELSRTFAHVDPVKEPIPVIPTCHYMMGGIPTKVTGQAL 369
|
Query:369 VPQGDEYEVPVKGLYAAGECACASVHGANRLGTNSLLDLVVF 410
           +V V GL+A GE AC SVHGANRLG NSLLDLVVF
Sbjct:370 TVNEKGEDVVVPGLFAVGEIACVSVHGANRLGGNSLLDLVVF 411
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 69>:
m010-1.seg..
   1ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG
|
  51TGCAGGTTTA CGCGCAGCCC TCCAATTATC CAAATCCGGT CTGAATTGTG
|
 101CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAg
|
 151GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
|
 201GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
|
 251CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
|
 301CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
|
 351TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
|
 401CCTGTGCGGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
|
 451CAACAAAACG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA
|
 501AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
|
 551AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT
|
 601GCTACCGGCG GCGGCGGTCG TATTTATGCG TCTTCTACCA ATGCCTATAT
|
 651GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG
|
 701AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GGGTGCGGGC
|
 751GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC
|
 801CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG
|
 851CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT
|
 901CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT
|
 951CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
|
1001TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG
|
1051ACTACCCACT ATATGATGGG CGGCATTCCG ACCAATTACC ACGGCGAAGT
|
1101TGTCGTTCCG CAAGGTGAAG ATTACGAAGT GCCTGTAAAA GGTCTGTATG
|
1151CGGCAGGTGA GTGCGCTTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT
|
1201ACCAATTACC TGTTGGACTT GGTGGTATTC GGTAAAGCTG CCGGCGACAG
|
1251CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
|
1301ATGCAGGTGA GTTGACCCGC CAACGTATCG AGCGTTTGGA CAACCAAACC
|
1351GATGGTGAAA ACGTTGATGC ATTGCGTCGC GAACTGCAAC GCTCTGTACA
|
1401ACTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC
|
1451GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC
|
1501AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA
|
1551CCTGATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG
|
1601AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA
|
1651AACTGGATGA AACATACGCT GTACCATTCA GATATCAATA CCTTGTCCTA
|
1701CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA
|
1751AGCGCGTTTA TTGATGA
This corresponds to the amino acid sequence <SEQ ID 70; ORF 010-1>:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 71>:
a010-1.seq..
   1ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG
|
  51TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG
|
 101CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG
|
 151GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
|
 201GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
|
 251CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
|
 301CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
|
 351TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
|
 401CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
|
 451CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA
|
 501AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
|
 551AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT
|
 601GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT
|
 651GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG
|
 701AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC
|
 751GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC
|
 801CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG
|
 851CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT
|
 901CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT
|
 951CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
|
1001TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG
|
1051ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT
|
1101TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG
|
1151CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT
|
1201ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG
|
1251CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
|
1301ATGCCGGCGA ACTGACCCGC CAACGTATCG AGCGTTTGGA CAATCAAACT
|
1351GATGGTGAAA ACGTTGATGC ATTGCGCCGC GAACTGCAAC GCTCCGTACA
|
1401ATTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC
|
1451GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC
|
1501AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA
|
1551CCTAATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG
|
1601AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA
|
1651AACTGGATGA AACATACGCT GTACCATTCA GATGCCAATA CCTTGTCCTA
|
1701CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA
|
1751AGCGCGTTTA TTGA
This corresponds to the amino acid sequence <SEQ ID 72; ORF 010-1.a>:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 73>:
g011.seq
  1ATGAAGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
|
 51GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
|
101GCCTGAAAAC CCGCCTTACC GAAGATATGA AAACCGCGAT GCGCGCCAAA
|
151GATCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAATGCCG CCGTCAAACA
|
201GTTTGAAGTA GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
|
251TCCTGACCAA AATGGTCAAA CAGCGCAAAG ACGGCGCGAA AATCTACACT
|
301GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGACGT
|
351GCTGCACCGC TACCTGCCGC AAATGCTCTC CGCCGGCGAA ATCCGCACCG
|
401CCGTCGAAGC AGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
|
451GGCAAAGTGA TGGTCGTATT GAAAAcccGC CTCGCCGGCA AAGccgATAT
|
501GGGCGAAGTC AACAAAATCT TGAAAAccGt aCTGACCGCC tga
This corresponds to the amino acid sequence <SEQ ID 74; ORF 011.ng>:
g011.pepr
  1MKTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKTRLT EDMKTAMRAK
|
 51DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDGAKIYT
|
101EAGRQDLADK ENAEIDVLHR YLPQMLSAGE IRTAVEAAVA ETGAAGMADM
|
151GKVMVVLKTR LAGKADMGEV NKILKTVLTA *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 75>:
m011.seq (partial)
  1ATGAGGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
|
 51GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
|
101GCCTGAAAAT CCGCCTTACC GAAGACATGA AAACCGCGAT GCGCGCCAAA
|
151GACCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAACGCCG CCGTCAAACA
|
201GTTTGAAGTG GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
|
251TCCTGACCAA AATGGTCAAA CAGCGAAAAG ACAGCGCGAA AATCTACACT
|
301GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGAGGT
|
351ACTGCACCGC TACCTTCCCC AAATGCTTTC CGCCGGCGAA ATCCGTACCG
|
401AGGTCGAAGC TGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
|
451GGTAAAGTCA TGGGGCTGCT GAAAACCCGC CTCGCAGGTA AAGCCGA...
This corresponds to the amino acid sequence <SEQ ID 76; ORF 011>:
m011.pep (partial)
  1MRTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKIRLT EDMKTAMRAK
|
 51DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDSAKIYT
|
101EAGRQDLADK ENAEIEVLHR YLPQMLSAGE IRTEVEAAVA ETGAAGMADM
|
151GKVMGLLKTR LAGKA.....
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 011 shows 95.8% identity over a 165 aa overlap with a predicted ORF (ORF 011.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 77>:
g012.seq
  1ATGCTCGCCC GTCGCTATTT TTTCAATATC CAACCCGGGG CGGTTTTCAC
|
 51TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGCCGGAAT
|
101TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
|
151AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACa
|
201gGcggTGGAT ATTCGgcact tccgCcacca cacccaccga accgatgacc
|
251gcaaacggaG CGGAAACAAT TTTATCCGCc acacacgcca tcatatagcc
|
301gcCGCTTGCC GCGACCTTAT CGAcggcgac ggTCAGCGGA ATATTGCGTT
|
351CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
|
401CCGCCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
|
451CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
|
501ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
|
551GCAGATTTCT CCCCGCCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
|
601CGCCTTTTCC TTTTTCTTTT CTTTTTTTTC CTGATGTTTT GTCTCTTCCT
|
651CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 78; ORF 012.ng>:
g012.pep
  1MLARRYFFNI QPGAVFTDKL LEQLMRFLQF LPEFLFALFR IFTHKSNRAL
|
 51KFARRHHIHI NIMFFQQAVD IRHFRHHTHR TDDRKRSGNN FIRHTRHHIA
|
101AACRDLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS EQNLIFRLGN
|
151QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPAL LQTLFLCFGF
|
201RLFLFLFFFF LMFCLFLA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 79>:
m012.seq
  1ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
|
 51TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
|
101TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
|
151AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
|
201GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC
|
251GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC
|
301GCCGCTCGCn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
|
351nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
|
401nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
|
451nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
|
501nnnnnnnnnn nnnnnnnnnC AACACAAAAA GGCGTGATTT nTGCGTTTCG
|
551GCAGATTTCT CCCCACCCTC CTTCAAACGT TTTTCcTCTG CTTTGGCTTC
|
601CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTGT GCCTCTTCCC
|
651CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 80; ORF 012>:
m012.pep
  1MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
|
 51KFARRHHIHI NIMFFQQAVD IRYFRHHTHR TDNRKRSGSN FIRHTRHHIT
|
101AARXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
|
151XXXXXXXXXX XXXXXXXXXX XXXQHKKA*F XRFGRFLPTL LQTFFLCFGF
|
201RLFLFLFLFF LMLCLFPA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 81>:
a012.seq
  1ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
|
 51TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
|
101TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
|
151AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
|
201GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC
|
251GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
|
301ACCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
|
351CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
|
401CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
|
451CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
|
501ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
|
551GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
|
601CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
|
651CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 82; ORF 012.a>:
a012.pep.
  1MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
|
 51KFARRHHIHI NIMFFQQAVD IRYFRYNTHR TDNRKRSGNN FIRHTRHHIT
|
101TARRHLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS KQNLIFRLGN
|
151QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF
|
201RLFLFLFLFF LMFCLFPA*
\nm012/a012 64.2% identity over a 218 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 012 shows 58.7% identity over a 218 aa overlap with a predicted ORF (ORF 012.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 83>:
m012-1.seq
1ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
|
51TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
|
101TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
|
151AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
|
201GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC
|
251GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC
|
301GCCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
|
351CGCGCAAACG CyTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
|
401CCGCCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
|
451CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
|
501ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
|
551GCAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
|
601CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
|
651CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 84; ORF 012-1>:
![\"embedded]()
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 85>:
a012-1.seq
1ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
|
51TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
|
101TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
|
151AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
|
201GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC
|
251GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
|
301ACCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
|
351CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
|
401CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
|
451CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
|
501ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
|
551GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
|
601CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
|
651CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 86; ORF 012-1.a>:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 87>:
g013.seq
1aTgcctttga ccatgctgtg cagcaGGAcg tGCGGTTtgt tcataataca
|
51gtCcgaccGG AAAagcggAG GAAaCGCAGT GCCGCGCCCT TCCCCTTTCT
|
101TGCCGTGGCA GGCGATGCag tTgGATTCGT ACACTTTTTG CCCTTTtGtc
|
151atgatGCTgt tgtcggCGGC AGAAGCgGCG GcgCAGAGGC AGCACAAGAT
|
201GAAGGCGGTC GGCAGTCGGG TTGTGTtcat tGgcgTTTCC cctaatgttt
|
251tgaaaccttg ttttttgatt Ttgcctttac ggggtgaaaa gtttttTtgg
|
301cccaaatccg gaatttag
This corresponds to the amino acid sequence <SEQ ID 88; ORF 013.ng:
g013.pep
1MPLTMLCSRT CGLFIIQSDR KSGGNAVPRP SPFLPWQAMQ LDSYTFCPFV
|
51MMLLSAAEAA AQRQHKMKAV GSRVVFIGVS PNVLKPCFLI LPLRGEKFFW
|
101PKSGI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 89>:
m013.seq
1ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
|
51GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
|
101TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
|
151ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAAGC AGCCCAAGAC
|
201GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTCATGTTTG
|
251AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT TTTGCCGAAT
|
301CAGTAG
This corresponds to the amino acid sequence <SEQ ID 90; ORF 013>:
m013.pep
1MPLTMLCSST CGFFMMKSER XSGGNMVPRP SPFLPWQATQ LDSYTFCPFV
|
51MMLLSAAEAA AQKQPKTRAV GSRVVFIGVS FMFETLLLIL RSGXKIFLPN
|
101Q*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 91>:
a013.seq
1ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
|
51GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
|
101TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
|
151ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAGGC AGCCCAAGAC
|
201GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTAATGTTTG
|
251AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT CTTGCCGAAT
|
301CGGTAG
This corresponds to the amino acid sequence <SEQ ID 92; ORF 013.a>:
a013.pep
1MPLTMLCSST CGFFMMKSER *SGGNMVPRP SPFLPWQATQ LDSYTFCPFV
|
51MMLLSAAEAA AQRQPKTRAV GSRVVFIGVS LMFETLLLIL RSG*KIFLPN
|
101R*
\nm013/a013 97.0% identity over a 101 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 013 shows 73.3% identity over a 101 aa overlap with a predicted ORF (ORF 013.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 93>:
g015.seq
1ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
|
51CATTTTGGTA TTCAACATCC GTTTTTTCCT ACTTTGGAAA AATCCAGAAA
|
101AGCCCTTGGT CGGCTTTTGG AAAGCACTGC CCCACCTCAA CGACACGATG
|
151CTGCTGTTTA CGGGATTGTG GCTGATGAAG ATTACCCATT TCTCCCCGTT
|
201CAACGCGCCT TGGCTCGGCA CAAAAATCCT GCTCCTGTTC GCCTACATCG
|
251CACTGGGCAT GGTAATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
|
301ACCGTTTACC TGCTCGCTAT GTGTTGCATC GCCTGCATCG TTTACCTTGC
|
351CAAAACCAAA GTCCTGCCAT TCTGA
This corresponds to the amino acid sequence <SEQ ID 94; ORF 015.ng>:
g015.pep
1MQYLIVKYSH QIFVTITILV FNIRFFLLWK NPEKPLVGFW KALPHLNDTM
|
51LLFTGLWLMK ITHFSPFNAP WLGTKILLLF AYIALGMVMM RARPRSTKFY
|
101TVYLLAMCCI ACIVYLAKTK VLPF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 95>:
m015.seq (partial)
1. . . AAAATCAGAA AAGCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA
|
51      CGACACCAT GCTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT
|
101      TCTCCCCGT TCAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC
|
151      GCCTATATC GCATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC
|
201      CAAGTTCTA CACCGTTTACC TGCTCGCCAT GTGTTGCGTC GCCTGCATCG
|
251      TTTACCTTG CCAAAACCAAA GTCCTGCCTT TCTGA
This corresponds to the amino acid sequence <SEQ ID 96; ORF 015:
m015.pep (partial)
1. . . KIRKALAGFW KALPHLNDTM LLFTGLWLMK ITHFSPFNAP WLGTKILLLL
|
51      AYIALGMMMM RARPRSTKFY TVYLLAMCCV ACIVYLAKTK VLPF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 97>:
a015.seq
1ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
|
51CATTTTGGTA TTCAACATCC GTGTTTTCNT ACTTTGGAAA AATCCAGAAA
|
101AGCCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA CGACACCATG
|
151CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT TCTCCCCGTT
|
201CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC GCCTATATCG
|
251CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
|
301ACCGTTTACC TGCTCGCCAT GTGTTGCCTC ACCTGCATCG TTTACCTTGC
|
351CAAAACCAAA GTCCTGCCTT TCTGA
This corresponds to the amino acid sequence <SEQ ID 98; ORF 015.a>:
a015.pep
1MQYLIVKYSH QIFVTITILV FNIRVFXLWK NPEKPLAGFW KALPHLNDTM
|
51LLFTGLWLMK ITHFSPFNAP WLGTKILLLL AYIALGMMMM RARPRSTKFY
|
101TVYLLAMCCL TCIVYLAKTK VLPF*
\nm015/a015 96.7% identity over a 91 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 015 shows 94.5% identity over a 91 aa overlap with a predicted ORF (ORF 015.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 99>:
g018.seq
1atGCAGCAGG GGCagttggt tggacgcgtc gcccgcaata AAGATATGCG
|
51GAATgctggt CTGCATggtC AGCGGATCGG CAACGGGtac gccgcgcgcg
|
101tctttgTCGA TATTGATGTT TTCCAAACCG ATATtgTCAA CGTTCGGACG
|
151GCgACCTACG GCTGCCAACA TATATTCGGC AACAAATACG CCTTTTTCGC
|
201CATCCTGCTC CCAATGGACT tctACATTGC CGTCTGCGTC GAGTTTGACC
|
251TCGGTTTTAG CATCCAGATG CAGTTTCAAT tctTCTCCGA ACACGGCTTT
|
301CGCCTCGTCT GA
This corresponds to the amino acid sequence <SEQ ID 100; ORF 018.ng>:
g018.pep
  1MQQGQLVGRV ARNKDMRNAG LHGQRIGNGY AARVFVDIDV FQTDIVNVRT
|
 51ATYGCQHIFG NKYAFFAILL PMDFYIAVCV EFDLGFSIQM QFQFFSEHGF
|
101RLV*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 101>:
m018.seq
  1ATGCAGCAGA GGCAGTTGGT TGGACGCATC GCCTGCGATG AAGATATGCG
|
 51GAATACTGGT CTGCATGGTC AGCGGGTCGG CAACAGGTAC GCCGCGCGCA
|
101TCTTTTTCGA TATTGATATT TTCCAAACCG ATATTGTCAA CGTTCGGACG
|
151GCGGCCCACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC
|
201CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCATC GAGTTTGACC
|
251TCGGTTTTAG CATCCAGATG CAGTTTCAAT TCTTCGCCGA ACACGGCGTT
|
301CGCCTCGTCT GA
This corresponds to the amino acid sequence <SEQ ID 102; ORF 018>:
m018.pepr
  1MQQRQLVGRI ACDEDMRNTG LHGQRVGNRY AARIFFDIDI FQTDIVNVRT
|
 51AAHGCQHIFG NKYAFFAILL PMDFYIAVCI EFDLGFSIQM QFQFFAEHGV
|
101RLV*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 103>:
a018.seq
  1ATGCAGCAGG GGCAGTTGGT TGGACGCGTC GCCCGCAATA AAGATATGCG
|
 51GAATACTGGT CTGCATAGTC AGCGGATCGG CAACGGGTAC GCCGCGCGCA
|
101TCTTTTTCGA TATTGATGTT TTCCAAACCG ATATTGTCAA CGTTCGGACG
|
151GCGGCCTACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC
|
201CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCGTC GAGTTTGGCC
|
251TCGGTTTTAG CATCCAAATG CAGTTTCAAT TCTTCACCGA ACACGGCTTT
|
301CGCCTCGTCT GA
This corresponds to the amino acid sequence <SEQ ID 104; ORF 018.a>.
a018.pep
  1MQQGQLVGRV ARNKDMRNTG LHSQRIGNGY AARIFFDIDV FQTDIVNVRT
|
 51AAYGCQHIFG NKYAFFAILL PMDFYIAVCV EFGLGFSIQM QFQFFTEHGF
|
101RLV*
\nm018/a018 86.4% identity over a 103 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 018 shows 84.5% identity over a 103 aa overlap with a predicted ORF (ORF 018.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 105>:
g019.seq (partial)
  1. . . ctgctggcgg ccctggtgct tgccgcgtgt tcttcgACAA ACAcacTGCC
|
 51       AGCCGGCAAG ACCCCGGCAG ACAATATAGA AActgcCgAC CTTTCGGCAA
|
101      GCGTTCCCAC ccgcCCTGCC GAACCGGAAG GAAAAACGCT GGCAGATTAC
|
151      GGCGGCTACC CGTCCGCACT GGATGCAGTG AAACAGAACA ACGATGCGGC
|
201      AGCCGCCGCC TATTTGGAAA Acgcaggaga cagCGcgatg gcGGAAAatg
|
251      tccgcaagga gtgGCTGa
This corresponds to the amino acid sequence <SEQ ID 106; ORF 019.ng>:
g019.pep (partial)
 1. . . LLAALVLAAC SSTNTLPAGK TPADNIETAD LSASVPTRPA EPEGKTLADY
|
51      GGYPSALDAV KQNNDAAAAA YLENAGDSAM AENVRKEWL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 107>:
m019.seq.(partial)
   1ATGTACCTAC CCTCTATGAA GCATTCCCTG CCGCTGCTGG CGGCCCTGGT
|
  51GCTTGCCGCG TGTTCTTCGA CAAACACACT GCCAGCCGGC AAGACCCCGG
|
 101CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCCGCCCT
|
 151GCCGAACCCG AAAGAAAAAC GCTGGCAGAT TACGGCGGCT ACCCGTCCGC
|
 201ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
|
 251AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
|
 301AAGTCTTTGG GCGCACGCAG ACAGTGGACG CTGTTTGCAC AGGAATACGC
|
 351CAAACTCGAA CCGGCAGGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
|
 401CGAGCCGCAA CGACTATACG CGTGCCGCTG AACTGGTCAA AAATACGGGC
|
 451AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
|
 501CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
|
 551GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
|
 601TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
|
 651CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
|
 701TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
|
 751GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
|
 801CGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
|
 851ACGCCCGCGC CGCCTTGCGC GCCCGACGTT GGGACGAGCT GGCCTCCGTT
|
 901ATCTCGCATA TGCCCGAAAA ACTGCAAAAA AGCCCGACCT GGCTCTACTG
|
 951GCTGGCACGC AGCCGCGCCG CAACGGGCAA CACGCAAGAG GCGGAAAAAC
|
1001TTTACAAACA GGCGGCAGCG ACGGGCAGGA ATTTTTATGC GGTGCTGGCA
|
1051GGGGAAGAAT TGGGTCGGAA AATCGATACG CGCAACAATG TGCCCGATGC
|
1101CGGCAAAAAC AGCGTCCGCC GCATGGCGGA AGACGGTGCA GTCAAACGCG
|
1151CACTGGTACT GTTCCAAAAC AGCCAATCTG CCGGTGATGC AAAAATGCGC
|
1201CGTCAGGCTC AGGCGGAATG GCGTTTTGCC ACACGCGGCT TTGACGAAGA
|
1251CAAGCTGCTG ACCGCCGCGC AAACCGCGTT CGACCACGGT TTTTACGATA
|
1301TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
|
1351CGCTATATTT CGCCGTTTAA AGACACGGTA ATCCGCCACG CGCAAAATGT
|
1401TAATGTCGAT CCGGCTTGGG TTTATGGGCT GATTCGTCAG GAAAGCCGCT
|
1451TCGTTATAGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
|
1501ATGCCTGCCA CCGCGCGCGA AATCGCCGGC AAAATCGGTA TGGATGCCGC
|
1551ACAACTTTAC ACCGCCGACG GG . . .
This corresponds to the amino acid sequence <SEQ ID 108; ORF 019>:
m019.pep (partial)
  1MYLPSMKHSL PLLAALVLAA CSSTNTLPAG KTPADNIETA DLSASVPTRP
|
 51AEPERKTLAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
|
101KSLGARRQWT LFAQEYAKLE PAGRAQEVEC YADSSRNDYT RAAELVKNTG
|
151KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
|
201FDGGTQGSRE YALLNVIGKE ARKSPNAAAL LSEMESGLSL EQRSFAWGVL
|
251GHYQSQNLNV PAALDYYGKV ADRRQLTDDQ IEWYARAALR ARRWDELASV
|
301ISHMPEKLQK SPTWLYWLAR SRAATGNTQE AEKLYKQAAA TGRNFYAVLA
|
351GEELGRKIDT RNNVPDAGKN SVRRMAEDGA VKRALVLFQN SQSAGDAKMR
|
401RQAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
|
451RYISPFKDTV IRHAQNVNVD PAWVYGLIRQ ESRFVIGAQS RVGAQGLMQV
|
501MPATAREIAG KIGMDAAQLY TADG . . .
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 109>:
a019.seq
   1ATGTACCCAC CCTCTCTGAA GCATTCCCTG CCGCTGCTGG TGGNCCTGGT
|
  51GCTTGCCGCG TGTTCTTNGA CAAACACACT GTCAGCCGAC AAGACCCCGG
|
 101CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCNGCCCT
|
 151GCCGAACCCG AANGAAAAAC GTNGGCAGAT TACGGCGGCT ACCCGTCCGC
|
 201ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
|
 251AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
|
 301AAGTCTTTGG GCGCGCGCAG ACAGTGGACG CTGTNTGCAC ANGAATATGC
|
 351NAAACTCGAA CCGGCANGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
|
 401CGAGCCGCAA CGACTATACG CGTGCCGCCG AACTGGTCAA AAATACGGGC
|
 451AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
|
 501CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
|
 551GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
|
 601TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
|
 651CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
|
 701TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
|
 751GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
|
 801NGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
|
 851ACGCCCGCGC CGCNNTNNGC NNNCGNNGTT NGNANGANNT GGCNNCCGNN
|
 901ANCNCGNNNN TGCNNGANAA ACNNNNNNAN AGNCNNANNT NGNTNNANTG
|
 951NNTGGCACGC AGCCGCGCCG CNACGGGCAA CACGCAANAN GCGGANAAAC
|
1001TNTACAAACA GGCGGCAGCA NCGGGCANGA ATTTTTATGC NGTGCTGNCN
|
1051GGGGAAGAGT TGGGGCGCAN AATCGATACG CGCAACAATG TGCCCGATGC
|
1101CGGCAAAANC AGCGTCCTCC GTATGGCGGA AGACGGCGCG ATTAAGCGCG
|
1151CGCTGGTGCT GTTCCGAAAC AGCCGAACCG CCGGCGATGC GAAAATGCGC
|
1201CGTCNGGCTC AGGCGGAATG GCGTTTCGCC ACACGCGGCT TCGATGAAGA
|
1251CAAGCTGCTG ACCGCCGCGC AAACCGCGTT CGACCACGGT TTTTACGATA
|
1301TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
|
1351CGCTACATTT CGNNNNNTNA NGACACGGTA ATCCGCCACG CGCAAAATGT
|
1401TAATGTCGAT CCGGCGTGGG TTTACGGGCT GATTCGTCAG GAAAGCCGCT
|
1451TCGTTATGGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
|
1501ATGCCTGCCA CCGCGCGCGA AATCGCCGGC AAAATCGGTA TGGATGCCGC
|
1551ACAACTTTAC ACCGCCGACG GCAATATCCG TATGGGGACG TGGTATATGG
|
1601CGGACACCAA ACGCCGCCTG CAAAACAACG AAGTCCTCGC CACCGCAGGC
|
1651TATAACGCCG GTCCCGGCAG GGCGCGCCGA TGGCAGGCGG ACACGCGGCT
|
1701CGAAGGCGCG GTATATGCCG AAACCATCCC GTTTTCCGAA ACGCGCGACT
|
1751ATGTCAAAAA AGTGATGGCC AATGCCGCCT ACTACGCCTC CCTCTTCGGC
|
1801GCGCCGCACA TCCCGCTCAA ACAGCGTATG GGCATTGTCC CCGCCCGCTG
|
1851A
This corresponds to the amino acid sequence <SEQ ID 110; ORF 019.a>:
a019.pep
  1MYPPSLKHSL PLLVXLVLAA CSXTNTLSAD KTPADNIETA DLSASVPTXP
|
 51AEPEXKTXAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
|
101KSLGARRQWT LXAXEYAKLE PAXRAQEVEC YADSSRNDYT RAAELVKNTG
|
151KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
|
201FDGGTQGSRE YALLNVIGKE ARKSPNAAAL LSEMESGLSL EQRSFAWGVL
|
251GHYQSQNLNV PAALDYXGKV ADRRQLTDDQ IEWYARAAXX XRXXXXXAXX
|
301XXXXXXKXXX XXXXXXXXAR SRAATGNTQX AXKLYKQAAA XGXNFYAVLX
|
351GEELGRXIDT RNNVPDAGKX SVLRMAEDGA IKRALVLFRN SRTAGDAKMR
|
401RXAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
|
451RYISXXXDTV IRHAQNVNVD PAWVYGLIRQ ESRFVMGAQS RVGAQGLMQV
|
501MPATAREIAG KIGMDAAQLY TADGNIRMGT WYMADTKRRL QNNEVLATAG
|
551YNAGPGRARR WQADTPLEGA VYAETIPFSE TRDYVKKVMA NAAYYASLFG
|
601APHIPLKQRM GIVPAR*
\nm019/a019 88.9% identity over a 524 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 019 shows 95.5% identity over a 89 aa overlap with a predicted ORF (ORF 019.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 111>:
g023.seq
  1ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT
|
 51AATGCAGCGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT
|
101TAGTGGTTCT ATTTGCCCTG CCTAAAGAAT ATCCGGCATG GCAGGCATTT
|
151TTTAGTCAAG CTTGGGTAAA AGTATTTACC CAAGTGAGCT TTATCGCCGT
|
201ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
|
251AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT TGtctGGCTG
|
301GTCGGCTGCC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA
This corresponds to the amino acid sequence <SEQ ID 112; ORF 023.ng>:
g023.pep
  1MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFAL PKEYPAWQAF
|
 51FSQAWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL
|
101VGCLVYSVKV IWG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:
m023.seq
  1ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT
|
 51GATGCAACGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT
|
101TAGTGGTTCT ATTTTCCCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT
|
151TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT
|
201ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
|
251AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTTTGGCTG
|
301GTCGGCTGTC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA
This corresponds to the amino acid sequence <SEQ ID 114; ORF 023>:
m023.pep
  1MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFSL PKEYSAWQAF
|
 51FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL
|
101VGCLVYSVKV IWG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>:
a023.seq
1ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GGGATTGGGC
|
51GATGCAACGT GCGACCGCGG TTATTATGTT GATTTATACC GTTGCACTTT
|
101TAGTGGTTCT ATTTGCTCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT
|
151TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT
|
201ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATNA
|
251AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTCTGGCTG
|
301GTCGGCTGCT TGGTGTATTC AATTAAAGTA ATTTGGGGGT AA
This corresponds to the amino acid sequence <SEQ ID 116; ORF 023.a>:
a023.pep
1MVERKLTGAH YGLRDWAMQR ATAVIMLIYT VALLVVLFAL PKEYSAWQAF
|
51FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYXKPFGVRL FLQVATIVWL
|
101VGCLVYSIKV IWG*
\nm023/a023 96.5% identity over a 113 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 023 shows 97.3% identity over a 113 aa overlap with a predicted ORF (ORF 023.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 117>:
g025.seq
1ATGTTGAAAC AAAcgACACT TTTGGCAGCT TGTACCGCCG TTGCCGCTCT
|
51GTTGGGCGGT TGcgCCACCC AACAGCCTGC TccTGTCATT GCAGGCAATT
|
101CAGGTATGCA GACCGTATCG TCTGCGCCGG TTTACAATCC TTATGGCGCA
|
151ACGCCGTACA ATGCCGCTCC TGCCGCCAac gatgcGCCgT ATGTGCCGCC
|
201CGTGCAAact gcgccggttT ATTCGCCTCC TGCTTATGTT CCGCcgtCTG
|
251CACCTGCCGT TTCGGgtaca tatgtTCCTT CTTACGCACC CgtcgACATC
|
301aacgCGGCGa cgCataCTAT TGTGCGTGGC GACACgGtgt acaACATTTc
|
351caaAcgCtac CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
|
401CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCaggA
|
451TATGCCGCAC CGAAAACCGC AGCCGTAGAA AGCAGGCCCG CCGTACCGGC
|
501TGCCGCGCAA ACCCCTGTGA AACCCGCCGC gcaACCGCCC GTTCAGTCCG
|
551CGCCGCAACC TGCCGCGCCC GCTGCGGAAA ATAAAGCGGT TCCCGCCCCC
|
601GCGCCCGCCC CGCAATCTCC TGCCGCTTCG CCTTCCGGCA CGCGTTCGGT
|
651CGGCGGCATT GTTTGGCAGC GTCCGACCCA AGGTAAAGTG GTTGCCGATT
|
701TCGGCGGCGG CAACAAGGGT GTCGATATTG CCGGCAATGC CGGACAACCC
|
751GTTTTGGCGG CGGCTGACGG CAAAGTGGTT TATGCCGGTT CAGGTTTGAG
|
801GGGATACGGA AACTTGGTCA TCATCCAGCA CAATTCCTCT TTCCTGACCG
|
851CGTACGGGCA CAACCAAAAA TTGCTGGTCG GCGAAGGTCA GCAGGTCAAA
|
901CGCGGTCAGC AGGTTGCTTT GATGGGTAAT ACCGATGCTT CCAGAACGCA
|
951GCTTCATTTC GAGGTGCGTC AAAACGGCAA ACCGGTTAAC CCGAACAGCT
|
1001ATATCGCGTT CTGA
This corresponds to the amino acid sequence <SEQ ID 118; ORF 025.ng>:
g025.pep
1MLKQTTLLAA CTAVAALLGG CATQQPAPVI AGNSGMQTVS SAPVYNPYGA
|
51TPYNAAPAAN DAPYVPPVQT APVYSPPAYV PPSAPAVSGT YVPSYAPVDI
|
101NAATHTIVRG DTVYNISKRY HISQDDFRAW NGMTDNTLSI GQIVKVKPAG
|
151YAAPKTAAVE SRPAVPAAAQ TPVKPAAQPP VQSAPQPAAP AAENKAVPAP
|
201APAPQSPAAS PSGTRSVGGI VWQRPTQGKV VADFGGGNKG VDIAGNAGQP
|
251VLAAADGKVV YAGSGLRGYG NLVIIQHNSS FLTAYGHNQK LLVGEGQQVK
|
301RGQQVALMGN TDASRTQLHF EVRQNGKPVN PNSYIAF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:
m025.seq1 (partial)
1...GTGCCGCCGG TGCAAAGCGC GCCGGTTTAT ACGCCTCCTG CTTATGTTCC 
|
51   GCCGTCTGCA CCTGCCGTTT CGGGTACATA CGTTCCTTCT TACGCACCCG
|
101   TCGACATCAA CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC
|
151   AACATTTCCA AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA
|
201   CGGCATGACC GACAATACGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC
|
251   CGGCAGGATA TGCCGCACCG AAAGCCGCAG CCGTAAAAAG CAGGCCCGCC
|
301   GTACCGGCTG CCGCGCAACC GCCCGTACAG TCCGCACCCG TCGACATTAA
|
351   CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC AACATTTCCA
|
401   AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA CGGCATGACC
|
451   GACAATATGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC CGGCAGGATA
|
501   TGCCGCACCG AAAACCGCAG CCGTAGAAAG CAGGCCCGCC GTACCGGCTG
|
551   CCGTGCAAAC CCCTGTGAAA CCCGCCGCGC AACCGCCTGT GCAGTCCGCG
|
601   CCGCAACCTG CCGCGCCCGC TGCGGAAAAT AAAGCGGTTC CCGCGCCCGC
|
651   CCCGCAATCT CCTGCCGCTT CGCCTTCCGG CACGCGTTCG GTCGGCGGCA
|
701   TTGTTTGGCA GCGTCCGACG CAAGGTAAAG TGGTTGCCGA TTTCGGCGGC
|
751   AACAACAAGG GTGTCGATAT TGCCGGTAAT GCGGGACAGC CCGTTTTGGC
|
801   GGCGGCTGAC GGCAAAGTGG TTTATGCCGG TTCAGGTTTG AGGGGATACG
|
851   GAAACTTGGT CATCATCCAG CATAATTCTT CTTTCCTGAC CGCATACGGG
|
901   CACAACCAAA AATTGCTGGT CGGCGAGGGG CAGCAGGTCA AACGCGGTCA
|
951   GCAGGTTGCT TTGATGGGCA ATACCGATGC TTCCAGAACG CAGCTTCATT
|
1001   TCGAGGTGCG TCAAAACGGC AAACCGGTTA ACCCGAACAG CTATATCGCG
|
1051   TTCTGA
This corresponds to the amino acid sequence <SEQ ID 110; ORF 025>:
m025.pep (partial)
1...VPPVQSAPVY TPPAYVPPSA PAVSGTYVPS YAPVDINAAT HTIVRGDTVY
|
51   NISKRYHISQ DDFRAWNGMT DNTLSIGQIV KVKPAGYAAP KAAAVKSRPA
|
101   VPAAAQPPVQ SAPVDINAAT HTIVRGDTVY NISKRYHISQ DDFRAWNGMT
|
151   DNMLSIGQIV KVKPAGYAAP KTAAVESRPA VPAAVQTPVK PAAQPPVQSA
|
201   PQPAAPAAEN KAVPAPAPQS PAASPSGTRS VGGIVWQRPT QGKVVADFGG
|
251   NNKGVDIAGN AGQPVLAAAD GKVVYAGSGL RGYGNLVIIQ HNSSFLTAYG
|
301   HNQKLLVGEG QQVKRGQQVA LMGNTDASRT QLHFEVRQNG KPVNPNSYIA
|
351   F*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>:
a025.seq
1ATGTTGACAC CAACAACACT TTAGGTAGCT TGTACCGCCC TTGCCGCTCA
|
51GTTGGGCGGA TGCCCCACCC AACACCCTTC TCCTGTCATT GCAGGCAATT
|
101CAGGTATGCA GACCGTACCG TCTGCGCCGG TTTACAATCC TTATGGCGCA
|
151ACGCCGTACA ATGCCGCTCC TGCCGCCAAC GATGCGCCGT ATGTGCCGCC
|
201GGTGCAAAGC GCGCCGGTTT ATANGCCTCC TGCTTATGTT CCGCCGTCTG
|
251CACCTGCCGT TTCGGGTACA TACGTTCCTT CTTACGCANC CGTCGACATC
|
301AACGCGGCGA CGCATACTAT TGTGCGCGGC GACACCGTGT ACAAGATTTC
|
351CAAATGCTAC CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
|
401CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA
|
451TATGCCGCAC CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC
|
501TGCCGCGCAA CCGCTCGTAC AGTCCGCACC CGTCGACATC AACGCGGCGA
|
551CGCATACTAT TGTGCGCGGC GACACGGTGT ACAACATTTC CAAACGCTAC
|
601CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA CCGACAATAC
|
651GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA TATGCCGCAC
|
701CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC TGCCGTGCAA
|
751ACCCCTGTGA AACCCGCCGC GCAACCGCCT GTGCAGTCCG CGCCGCAACC
|
801TGCCGCGCCC GCTGCGGAAA ATAAAGCGGT TCCCGCGCCC GCCCCGCAAT
|
851CTCCTGCCGC TTCGCCTTCC GGCACGCGTT CGGTCGGCGG CATTGTTTGG
|
901CAGCGTCCGA CGCAAGGTAA AGTGGTTGCC GATTTCGGCG GCAACAACAA
|
951GGGTGTCGAT ATTGCAGGAA ATGCGGGACA GCCCGTTTTG GCGGCGGCTG
|
1001ACGGCAAAGT GGTTTATGCA GGTTCCGGTT TGAGGGGATA CGGCAATTTG
|
1051GTCATCATCC AGCATAATTC TTCCTTCCTG ACCGCATACG GGCACAACCA
|
1101AAAATTGCTG GTCGGCGAAG GCCAGCAGGT CAAACGCGGG CAGCAGGTCG
|
1151CTTTGATGGG CAATACCGAG GCTTCTAGAA CGCAGCTTCA TTTCGAGGTG
|
1201CGGCAAAACG GCAAACCGGT TAATCCGAAC AGCTATATCG CGTTCTGA
This corresponds to the amino acid sequence <SEQ ID 112; ORF 025.a>:
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 025 shows 75.6% identity over a 353 aa overlap with a predicted ORF (ORF 025.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 113>:
g031.seq
1ATGGTGTCCC TCCGCTTCAG ATTCGGCAAC CACTTTAAAC GCCGACATTC
|
51TGACAATTTC CTTTTCCGCC AGCCAAATAT CATGCGTATC TTTCGGTTCG
|
101GGCTTGTTGG GCATGGCAAC CTTCAACAGC CGCGCCATCA CAGGAATCGT
|
151CGTTCCCTGA ATCAGCAGCG ACAGCACCAC CACGGCAAAC GCCACATCAA
|
201ACAGCAGGTG CGAATTGGGA ACGCCCATCA CCAGCGGCAT CATCGCCAGC
|
251GAAATCGGTA CGGCTCCTCG CAAGCCCAAC CAACTGATAT ACGCCTTTTC
|
301ACGCAGGCTG TAATTGAATT TCCACAAACC GCCGAACACT GCCAGCGGAC
|
351GCGCGACCAG CATCAGGAAC GCCGCAATCG CCAAGGCTTC CGCCGCCCTG
|
401TCCAACACGC CGGCGGGAGA AACCAGCAGA CCGAGCATGA CGAACAAAGT
|
451TGCCTGCGCC AGCCAAGCCA AACCGTCCAT CACACGCAAA ACGTGTTCCG
|
501TcgcACGGTT GCGCTGGTTA CCGACAATGA TGCCGGCAAG GTAAACCGCC
|
551AAAAAGCCGC TGCCGCCTAT GGTATTGGTA AACGCAAACA CAAGCAGCCC
|
601GCCCGACACA ATCATCAGCG CGTACAGACC TTCCGtacac acctccaatt
|
651cccaatcaac gtcatagctg tctcccgtgt taaaatgttc ttcacttcag
|
701aatccccccc ttcttcccag cccgaaacct tcatgtgtta naccctgggg
|
751tgccccaacg gatttagtaa cctcccaatg actctgcttg tcgccccctt
|
801cgcccgcttt ctccttccgg gaaaacttgt tgtccccgtc ttacattaa
This corresponds to the amino acid sequence <SEQ ID 114; ORF 031.ng>:
g031.pep
1MVSLRFRFGN HFKRRHSDNF LFRQPNIMRI FRFGLVGHGN LQQPRHHRNR
|
51RSLNQQRQHH HGKRHIKQQV RIGNAHHQRH HRQRNRYGSS QAQPTDIRLF
|
101TQAVIEFPQT AEHCQRTRDQ HQERRNRQGF RRPVQHAGGR NQQTEHDEQS
|
151CLRQPSQTVH HTQNVFRRTV ALVTDNDAGK VNRQKAAAAY GIGKRKHKQP
|
201ARHNHQRVQT FRTHLQFPIN VIAVSRVKMF FTSESPPSSQ PETFMCXTLG
|
251CPNGFSNLPM TLLVAPFARF LLPGKLVVPV LH*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>:
m031.seq (partial)
1...CGCCTGAAGC ACGGTGTCGG ACTGCATTTC TATTCGGCTA TACGCCTTTT
|
51   CACGCAGGCT GTAATTGAAT TTCCACAAAC CGCCGAACAC TGCCGACGGA
|
101   CGCGCGACCA GCATCAGGAA CGCCGCAATC GCCAAgGCTT CCGCCGCCCT
|
151   GTCCAACACG TTGGCAGGAG AAACCAGCAG CAAAGGCATT CCCAAACGTG
|
201   CGGACAAAGT GGTCGAAACC ACGCTCAGAA ACAACAGTGC GCCACCCGGC
|
251   AG...
This corresponds to the amino acid sequence <SEQ ID 116; ORF 031>:
m031.pep (partial)
1...RLKHGVGLHF YSAIRLFTQA VIEFPQTAEH CRRTRDQHQE RRNRQGFRRP
|
51   VQHVGRRNQQ QRHSQTCGQS GRNHAQKQQC ATRQ....
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>:
a031.seq
1ATACGCCTTT TCACGCAGGC TGTAATTGAA TTTCCACAAA CCGCCGAACA
|
51CTGCCGGCGG ACGCGCGACC AGCATCAGGA ACGCCGCAAT CGCCAAGGCT
|
101TCCGCCGCCC CGTCCAACAC GTTGGCAGGA GAAACCAGCA GCAAAGGCAT
|
151TCCCAAACGT GCGGACAAAG TGGTCGAAAC CACGCTCAGA AACAACAGTG
|
201CGCCACCCGG CAG
This corresponds to the amino acid sequence <SEQ ID 118; ORF 031.a>:
a031.pep (partial)
1IRLFTQAVIE FPQTAEHCRR TRDQHQERRN RQGFRRPVQH VGRRNQQQRH
|
51SQTCGQSGRN HAQKQQCATR Q
\nm031/a031 100.0% identity over a 71 aa overlap\n
![\"embedded]()
Computer analysis of this amino acid sequence gave the following results:
Homology with a Predicted ORF from N. gonorrhoeae
ORF 031 shows 60.0% identity over a 85 aa overlap with a predicted ORF (ORF 031.ng) from N. gonorrhoeae:
![\"embedded]()
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 119>: